Spark 分布式内存计算框架
课程介绍:
课程资源名称:Spark 分布式内存计算框架,资源大小:80.04G,详见下放截图与文件目录。
课程文件目录:Spark 分布式内存计算框架[80.04G]
视频-Spark分布式内存计算框架[12.04G]
01_Spark框架中流式处理模块和四大流式计算框架.mp4[21.89M]
01_大数据技术框架总述.mp4[31.45M]
01_上次课程内容回顾.mp4[47.21M]
01_昨日课程内容回顾(一).mp4[24.39M]
01_昨日课程内容回顾.mp4[33.24M]
01_昨日课程内容回顾:SparkStreaming窗口和偏移量管理.mp4[26.30M]
01_昨日课程内容回顾:核心要点.mp4[15.72M]
01_昨日课程内容回顾:入门案例和DStream.mp4[26.70M]
02_RDD共享变量:含义及案例需求说明.wmv[69.80M]
02_Spark开发词频统计程序.wmv[42.05M]
02_Spark课程说明.wmv[46.22M]
02_今日课程内容提纲.wmv[35.39M]
02_实时应用数据源Kafka中数据来源.wmv[25.79M]
02_昨日课程内容回顾(二).wmv[38.97M]
02_昨日课程内容回顾:StructuredStreaming基础入门.wmv[62.50M]
02_昨日课程内容回顾:集成Kafka.wmv[67.52M]
02_昨日课程内容回顾:思维导图.wmv[60.56M]
03_Straming概述:流式应用场景.wmv[26.85M]
03_分布式SQL引擎:spark-sql交互式命令行使用.wmv[47.56M]
03_共享变量:编程实现非单词过滤.wmv[67.64M]
03_广告投放的地域分布(五).wmv[85.99M]
03_今日课程内容提纲.wmv[31.95M]
03_实时存储HBase:业务实现概述.wmv[26.43M]
03_物联网数据实时分析:需求概述及数据准备.wmv[55.84M]
03_昨日课程内容回顾:无状态和有状态计算.wmv[45.14M]
04_Spark应用提交:spark-submit命令参数.wmv[55.57M]
04_Spark框架中各个模块的数据结构抽象.wmv[36.87M]
04_Spark是什么.wmv[54.33M]
04_Straming概述:Lambda架构.wmv[30.16M]
04_分布式SQL引擎:启动ThriftServer服务和beeline连接.wmv[25.41M]
04_分区操作函数mapPartitions和foreachPartition.wmv[39.38M]
04_广告投放其他维度分析.wmv[45.69M]
04_实时存储HBase:编写应用主类整体结构.wmv[23.73M]
04_物联网数据实时分析:基于DSL实现.wmv[69.30M]
04_应用案例:实时窗口统计window.wmv[75.98M]
05_Spark四大特点.wmv[41.84M]
05_Spark应用提交:提交local和Standalone模式运行.wmv[67.96M]
05_Straming概述:流式数据计算模式.wmv[40.46M]
05_分布式SQL引擎:JDBCClient使用.wmv[31.04M]
05_今日课程内容提纲.wmv[30.99M]
05_实时存储HBase:编写streamingProcess方法整体结构.wmv[40.07M]
05_物联网数据实时分析:基于SQL实现.wmv[43.17M]
05_应用案例:实时窗口统计reduceByKeyAndWindow.wmv[66.32M]
05_应用提交:应用开发测试概述.wmv[8.94M]
05_重分区函数repartition和coalesce.wmv[30.21M]
06_Scala集合中聚合函数reduce和fold.wmv[21.29M]
06_SparkonYARN:参数配置和服务启动.wmv[68.42M]
06_Spark框架模块.wmv[53.33M]
06_SparkSession应用入口.wmv[46.11M]
06_Straming概述:SparkStreaming计算思想.wmv[32.76M]
06_离线数据分析流程(五步).wmv[22.34M]
06_偏移量管理:概述及Checkpoint原理.wmv[46.99M]
06_实时存储HBase:编写HBaseDao数据层.wmv[73.00M]
06_数据去重及案例演示.wmv[49.13M]
06_应用提交:应用打包.wmv[51.93M]
07_ContinuousProcessing连续处理原理及演示.wmv[119.07M]
07_RDD中聚合函数reduce和fold.wmv[40.44M]
07_SparkonYARN:提交运行PI和WordCount.wmv[39.40M]
07_Spark运行模式.wmv[19.43M]
07_词频统计WordCount:基于DSL编程.wmv[50.18M]
07_官方案例运行:每批次词频统计WordCount.wmv[29.51M]
07_今日课程内容提纲.wmv[44.23M]
07_偏移量管理:重构代码.wmv[47.68M]
07_实时存储HBase:保存偏移量至Zookeeper.wmv[66.68M]
07_应用提交:删除分区数据和报表数据.wmv[11.77M]
08_DeployMode部署模式:client和cluster区别(理论).wmv[17.87M]
08_RDD中聚合函数aggregate.wmv[45.93M]
08_Spark课程环境准备(虚拟机).wmv[69.79M]
08_词频统计WordCount:基于SQL编程.wmv[56.59M]
08_集群提交运行(本地模式).wmv[61.93M]
08_流式处理:时间概念.wmv[27.40M]
08_偏移量管理:Checkpoint编码实现.wmv[144.96M]
08_入门案例:Streaming编程模块.wmv[28.05M]
08_实时存储HBase:从Zookeeper加载偏移量.wmv[56.44M]
08_综合实战业务背景和需求概述.wmv[72.76M]
09_DeployMode部署模式:client和cluster演示(理Standalone集群).wmv[35.11M]
09_PairRDDFunctions中聚合函数.wmv[51.79M]
09_Spark本地模式配置.wmv[53.15M]
09_SparkSQL前世今生.wmv[69.15M]
09_集群提交运行(集群模式).wmv[69.31M]
09_偏移量管理:手动管理偏移量和状态思路_.wmv[58.46M]
09_入门案例:代码实现及测试运行.wmv[38.87M]
09_实时存储HBase:测试运行SparkStreaming实现应用.wmv[66.56M]
09_数据调研和业务需求.wmv[62.38M]
09ent-time窗口分析:原理剖析.wmv[24.11M]
10_Oozie集成Spark2安装配置.wmv[46.81M]
10_RDD关联函数.wmv[44.33M]
10_SparkonYARN不同DeployMode区别(画图演示).wmv[54.21M]
10_SparkSQL官方定义和特性.wmv[28.50M]
10_本地模式运行spark-shell及测试.wmv[59.74M]
10_环境搭建:大数据环境.wmv[35.02M]
10_偏移量管理:MySQL存储偏移量(一).wmv[46.31M]
10_入门案例:Streaming应用监控.wmv[28.17M]
10_实时存储HBase:基于StructuredStreaming实现.wmv[78.33M]
10ent-time窗口分析:编程测试.wmv[56.77M]
11_DataFrame是什么.wmv[44.61M]
11_Oozie调度框架回顾.wmv[49.14M]
11_RDD函数练习.wmv[10.44M]
11_SparkStreaming运行工作原理.wmv[68.90M]
11_环境搭建:应用开发环境.wmv[25.72M]
11_偏移量管理:MySQL存储偏移量(二).wmv[119.84M]
11_上午课程内容回顾.wmv[38.40M]
11_上午内容复习回顾.wmv[32.67M]
11_实时订单报表:整体业务概述.wmv[19.49M]
11ent-time窗口生成.wmv[51.15M]
12_BatchInterval和BlockInterval.wmv[24.78M]
12_DataFrame中Schema.wmv[7.68M]
12_Oozie调度Spark2应用.wmv[139.45M]
12_RDD持久化.wmv[49.08M]
12_spark-shell运行词频统计WordCount(一).wmv[36.12M]
12_YARNClient模式运行流程及演示.wmv[51.47M]
12_偏移量管理:Kafka自身管理(异步提交偏移量).wmv[56.82M]
12_实时订单报表:Spark-Redis库使用.wmv[73.60M]
12_水位Watermark引入及延迟数据.wmv[37.53M]
12_项目初始化:属性文件和工具类.wmv[18.97M]
13_DataFrame中每行数据Row.wmv[25.90M]
13_spark-shell运行词频统计WordCount(二).wmv[49.82M]
13_StructuredStreaming结构化流模块综合概述.wmv[29.41M]
13_YARNCluster模式运行流程及演示.wmv[55.47M]
13_上午课程内容回顾.wmv[46.83M]
13_深入剖析Oozie组件及运行本质和配置.wmv[104.45M]
13_实时订单报表:报表业务主类结构编写.wmv[60.18M]
13_水位Watermark计算及案例讲解.wmv[35.80M]
13_项目初始化:加载属性文件.wmv[34.86M]
14_DStream是什么.wmv[28.75M]
14_Hue创建Oozie工作流.wmv[69.94M]
14_RDDCheckpoint.wmv[48.29M]
14_SparkApplication运行MAIN函数代码执行.wmv[30.98M]
14_StructuredStreaming课程内容提纲.wmv[35.03M]
14_报表开发:总销售额实现和测试.wmv[61.66M]
14_监控页面及圆周率PI运行.wmv[57.89M]
14_上午课程内容回顾.wmv[40.26M]
14_实时综合案例:背景概述.wmv[32.20M]
14_项目初始化:SparkSession工具类.wmv[65.72M]
15_DStreamOperations函数概述.wmv[29.00M]
15_DStream中针对RDD操作函数说明.wmv[5.83M]
15_Oozie调度应用:调度【ETL应用】.wmv[56.01M]
15_RDD转换DataFrame:综合概述.wmv[25.25M]
15_SogouQ日志分析:数据调研和业务分析.wmv[42.18M]
15_SparkStandalone集群架构.wmv[35.78M]
15_SparkStreaming不足及Structured诞生.wmv[70.62M]
15_报表开发:省份销售额实现.wmv[42.55M]
15_实时综合案例:内容提纲.wmv[38.47M]
15_项目初始化:记录日志和配置log4j.properties文件.wmv[32.45M]
15_总述Spark应用运行.wmv[15.62M]
16_DStream中transform函数使用.wmv[23.85M]
16_Oozie调度应用:调度【报表应用】.wmv[36.78M]
16_RDD概念:核心抽象及RDD论文.wmv[82.98M]
16_RDD转换DataFrame:反射类型推断.wmv[32.31M]
16_SogouQ日志分析:HanLP中文分词.wmv[42.94M]
16_SparkStandalone集群部署测试(一).wmv[84.86M]
16_StructuredStreaming概述:模块介绍和核心思想.wmv[29.50M]
16_报表开发:城市销售额实现.wmv[54.97M]
16_广告数据ETL:IP地址解析.wmv[48.63M]
16_实时综合案例:业务需求概述.wmv[48.43M]
17_DStream中foreachRDD函数使用.wmv[34.27M]
17_Hue创建OozieWorkFlow:ETL应用.wmv[34.60M]
17_RDD概念:RDD定义.wmv[31.86M]
17_RDD转换DataFrame:自定义Schema.wmv[26.55M]
17_SogouQ日志分析:读取数据封装SogouRecord.wmv[42.70M]
17_SparkStandalone集群部署测试(二).wmv[23.64M]
17_StructuredStreaming概述:编程模型.wmv[31.05M]
17_报表开发:Double精度丢失处理.wmv[59.91M]
17_广告数据ETL:IP工具类.wmv[21.23M]
17_环境搭建说明:大数据环境.wmv[23.33M]
18_Hue创建OozieWorkFlow:报表应用.wmv[27.78M]
18_RDD概念:RDD特性.wmv[43.72M]
18_SogouQ日志分析:搜索关键词统计.wmv[34.93M]
18_SparkApplicaiton应用组成.wmv[34.50M]
18_StructuredStreaming概述:编程模型(二).wmv[20.07M]
18_toDF函数指定列名称转换为DataFrame.wmv[31.98M]
18_报表开发:每日实时统计需求说明.wmv[17.02M]
18_广告数据ETL:Hive表创建.wmv[66.44M]
18_环境搭建说明:应用开发环境.wmv[19.93M]
18_上午课程内容回顾.wmv[36.59M]
19_Hue创建OozieCoordinator:ETL应用.wmv[38.83M]
19_RDD概念:WordCount中RDD.wmv[44.11M]
19_SogouQ日志分析:用户搜索点击统计.wmv[27.97M]
19_Spark应用WEBUI监控.wmv[57.66M]
19_SparkStreaming流式应用三种状态(一).wmv[16.50M]
19_报表开发:每日实时统计(一).wmv[82.58M]
19_广告数据ETL:日期获取.wmv[26.42M]
19_基于DSL分析(函数说明)和SQL分析.wmv[37.45M]
19_入门案例WordCount:功能演示.wmv[45.57M]
19_项目初始化:加载属性文件.wmv[47.13M]
20_Hue创建OozieCoordinator:报表应用.wmv[22.82M]
20_RDD创建:两种方式和并行化集合.wmv[26.17M]
20_SogouQ日志分析:搜索时间段统计.wmv[25.56M]
20_SparkStandaloneHA高可用配置测试.wmv[43.42M]
20_SparkStreaming流式应用三种状态(二).wmv[50.92M]
20_报表开发:每日实时统计(二).wmv[98.58M]
20_电影评分数据分析:需求说明.wmv[21.26M]
20_广告数据ETL:加载JSON数据.wmv[29.57M]
20_入门案例WordCount:Socket数据源和Console接收器.wmv[15.83M]
20_项目初始化:工具类SparkUtils.wmv[34.56M]
21_RDD创建:外部存储系统和读取小文件.wmv[46.99M]
21_Spark内核调度:引例WordCount.wmv[19.93M]
21_Spark应用开发:创建Maven工程及模块.wmv[30.07M]
21_报表开发:每日实时统计(三).wmv[54.96M]
21_电影评分数据分析:数据ETL.wmv[18.50M]
21_广告数据ETL:数据ETL(一).wmv[54.01M]
21_流式应用技术栈及Kafka面试题.wmv[21.32M]
21_入门案例WordCount:编程实现.wmv[75.48M]
21_实时综合案例:模拟交易订单数据.wmv[57.54M]
21_外部数据源:综合概述.wmv[17.05M]
22_InputSources输入源概述及File数据源.wmv[39.17M]
22_RDD分区数目.wmv[17.43M]
22_Spark内核调度:RDD依赖.wmv[29.34M]
22_Spark应用开发:创建SparkContext对象.wmv[31.96M]
22_SparkStreaming集成Kafka两种方式(Old和NewConsumerAPI).wmv[52.76M]
22_电影评分数据分析:SQL分析.wmv[23.06M]
22_广告数据ETL:数据ETL(二).wmv[18.86M]
22_流式应用调优综合概述(三个方面).wmv[41.45M]
22_实时综合案例:数据实时ETL(一).wmv[38.07M]
22_外部数据源:Spark与HBase交互概述.wmv[14.92M]
23_Ratesource数据源.wmv[19.34M]
23_RDD函数分类.mp4[16.06M]
23_Spark内核调度:DAG和Stage.wmv[21.26M]
23_Spark应用开发:词频统计Wordc编写测试.wmv[20.89M]
23_电影评分数据分析:DSL分析.wmv[42.36M]
23_广告数据ETL:数据ETL(三).wmv[33.23M]
23_集成KafkaOldConsumerAPI两种区别.wmv[12.76M]
23_实时综合案例:数据实时ETL(二).wmv[82.67M]
23_外部数据源:HBaseSink.wmv[68.77M]
23_应用打包提交运行本地模式(一).wmv[66.39M]
24_OldConsumerAPI中Direct方式集成:编程实现.wmv[79.18M]
24_Spark内核调度:SparkShuffle.wmv[24.08M]
24_Spark应用开发:词频统计TopKey(一).wmv[14.67M]
24_StreamingQueries基本设置(名称、触发、检查点及输出模式).wmv[50.92M]
24_电影评分数据分析:保存结果至MySQL和CSV文件.wmv[39.13M]
24_广告数据ETL:数据ETL(四).wmv[76.48M]
24_实时综合案例:数据实时ETL(三).wmv[159.96M]
24_外部数据源:HBaseSource.wmv[92.76M]
24_应用打包提交运行本地模式(二).wmv[42.56M]
25_OldConsumerAPI中Direct方式集成:底层原理及最大数据量.wmv[31.09M]
25_Spark内核调度:Job调度流程.wmv[42.06M]
25_Spark应用开发:词频统计TopKey(二).mp4[8.86M]
25_电影评分数据分析:SparkSQL中Shuffle分区数.wmv[19.63M]
25_广告数据ETL:Spark分布式缓存.wmv[27.63M]
25_实时应用停止:思路分析.wmv[40.69M]
25_输出终端Sink概述.wmv[17.44M]
25_外部数据源:MySQLSink.mp4[26.51M]
25_应用性能调优:数据本地性.wmv[37.79M]
26_Dataset是什么.wmv[23.62M]
26_NewConsumerAPI方式集成编程.wmv[56.60M]
26_Spark内核调度:Spark基本概念.wmv[24.28M]
26_广告数据ETL:SparkonHive与HiveonSpark区别.wmv[17.49M]
26_实时应用停止:编程实现及测试.wmv[51.67M]
26_输出函数foreach使用.wmv[58.01M]
26_应用性能调优:SparkStreaming反压机制.wmv[24.11M]
27_RDD、DS和DF之间转换.wmv[48.84M]
27_Spark并行度(一).wmv[10.79M]
27_集成Kafka时获取消费偏移量信息.wmv[72.60M]
27_实时增量存储:概述(HBase及Elasticsearch).wmv[10.55M]
27_输出函数foreachBatch使用.wmv[33.30M]
27_业务报表分析:业务需求.wmv[12.53M]
27_应用性能调优:动态资源分配.wmv[24.66M]
28_Spark并行度(一).mp4[14.87M]
28_StructuredStreaming如何保证容错语义.wmv[26.36M]
28_存储Elasticsearch:集成Elasticsearch.wmv[25.69M]
28_面试题:如何理解RDD、DF和DS.wmv[12.84M]
28_业务报表分析:报表运行主类.wmv[44.81M]
28_应用案例:业务场景和需求说明.wmv[25.56M]
28_应用性能调优:日志管理.mp4[14.58M]
29_存储Elasticsearch:StructuredStreaming实现.mp4[40.40M]
29_集成Kafka概述及Kafka消费数据.wmv[47.02M]
29_外部数据源:加载load和保存save数据.wmv[41.78M]
29_业务报表分析:各地域数量分布(一).wmv[18.79M]
29_应用案例:初始化环境.wmv[107.90M]
30_集成Kafka:Kafka数据源.wmv[40.91M]
30_外部数据源:案例演示.(parquet、json、csv和jdbc).wmv[66.95M]
30_业务报表分析:各地域数量分布(二).wmv[49.37M]
30_应用案例:StreamingContextUtils工具类.wmv[24.12M]
31_集成Kafka:实时数据ETL架构.wmv[18.92M]
31_外部数据源:集成Hive概述.wmv[17.46M]
31_业务报表分析:各地域数量分布(三).wmv[59.29M]
31_应用案例:实时数据ETL存储.wmv[99.94M]
32_集成Kafka:基站数据准备.wmv[25.91M]
32_外部数据源:集成Hive(spark-shell).wmv[32.62M]
32_业务报表分析:各地域数量分布(四).wmv[64.78M]
32_应用案例:updateStateByKey函数.wmv[112.20M]
33_广告投放的地域分布(一).wmv[21.30M]
33_集成Kafka:KafkaSink.mp4[19.15M]
33_外部数据源:集成Hive(IDEA开发).wmv[24.29M]
33_应用案例:mapWithState函数.mp4[25.56M]
34_广告投放的地域分布(二).wmv[35.44M]
34_自定义UDF函数在SQL和DSL中使用.mp4[16.94M]
35_广告投放的地域分布(三).wmv[97.13M]
36_广告投放的地域分布(四).mp4[21.38M]
资料-Spark分布式内存计算框架[68.00G]
01_讲义[52.00M]
01_第一部分【Spark基础环境】讲义_V1.2.pdf[2.35M]
01_第一部分【Spark基础环境】教案_V1.2.pdf[4.91M]
02_第二部分【SparkCore】讲义_V1.2.pdf[1.86M]
02_第二部分【SparkCore】教案_V1.2.pdf[4.87M]
03_第三部分【SparkSQL】讲义_V1.2.pdf[1.96M]
03_第三部分【SparkSQL】教案_V1.2.pdf[4.29M]
04_第四部分【离线综合实战】讲义_V1.2.pdf[534.74K]
04_第四部分【离线综合实战】教案_V1.2.pdf[2.80M]
05_第五部分【SparkStreaming】讲义_V1.0.pdf[1.48M]
05_第五部分【SparkStreaming】讲义_V1.0.pptx[3.86M]
05_第五部分【SparkStreaming】教案_V1.2.pdf[5.58M]
06_第六部分【StructuredStreaming】讲义_V1.0.pdf[1.47M]
06_第六部分【StructuredStreaming】教案_V1.2.pdf[4.14M]
07_第七部分【实时综合实战】讲义_V1.0.pdf[570.46K]
07_第七部分【实时综合实战】讲义_V1.2.pdf[570.46K]
07_第七部分【实时综合实战】教案_V1.0.pdf[2.95M]
07_第七部分【实时综合实战】教案_V1.2.pdf[2.93M]
07_第七部分【实时综合实战】提纲_V1.0.xmind[611.11K]
大数据技术框架.xmind[62.61K]
第四部分【离线综合实战】教案_V1.0.pdf[4.25M]
03_笔记[11.57M]
img[10.46M]
1595891933073.png[14.81K]
1595976685251.png[16.56K]
1596101266929.png[23.65K]
1596201978194.png[17.58K]
1596337649913.png[14.25K]
1596498924189.png[16.80K]
1597500898364.png[19.10K]
1597710218529.png[16.89K]
1599696341000.png[13.88K]
1599702867871.png[29.34K]
1599703773505.png[23.40K]
1599704058467.png[12.25K]
1599704238396.png[23.76K]
1599704570460.png[192.70K]
1599705077574.png[14.71K]
1599705322318.png[32.40K]
1599707210186.png[42.82K]
1599707600584.png[20.17K]
1599707856303.png[41.94K]
1599707863047.png[41.94K]
1599707872138.png[38.93K]
1599709239714.png[2.90K]
1599709323673.png[7.63K]
1599709367924.png[18.65K]
1599709639408.png[30.14K]
1599709683354.png[28.35K]
1599711303229.png[35.77K]
1599720234854.png[32.40K]
1599724201146.png[48.07K]
1599724504561.png[12.17K]
1599726452850.png[52.47K]
1599729686032.png[31.10K]
1599729718689.png[19.89K]
1599729798577.png[37.23K]
1599876485594.png[43.49K]
1599876953137.png[23.43K]
1599877189288.png[16.43K]
1599881247992.png[7.53K]
1599882411227.png[46.25K]
1599882417063.png[35.32K]
1599882423496.png[34.61K]
1599883102831.png[50.56K]
1599885363564.png[56.83K]
1599885382327.png[57.87K]
1599892810169.png[5.93K]
1599892816403.png[5.93K]
1599894785169.png[43.81K]
1599900726041.png[170.18K]
1599902696073.png[104.23K]
1599902709605.png[67.71K]
1599962163164.png[21.58K]
1599962236783.png[99.12K]
1599962305420.png[2.22K]
1599962353615.png[27.41K]
1599963200723.png[18.35K]
1599970185702.png[10.11K]
1599980331733.png[21.79K]
1599990019131.png[61.72K]
1599990289015.png[33.39K]
1600132588270.png[56.60K]
1600133683257.png[19.63K]
1600136851410.png[37.10K]
1600137322547.png[25.64K]
1600137334090.png[3.81K]
1600137340789.png[4.42K]
1600137375855.png[4.84K]
1600137413823.png[5.84K]
1600137423207.png[4.93K]
1600140841410.png[43.65K]
1600140866757.png[71.36K]
1600140916031.png[52.84K]
1600141239973.png[115.99K]
1600141242516.png[115.99K]
1600141672464.png[5.31K]
1600141875261.png[121.49K]
1600142147794.png[21.75K]
1600142166542.png[21.75K]
1600142698159.png[261.73K]
1600143367517.png[19.78K]
1600151674581.png[62.30K]
1600152163594.png[261.73K]
1600153358979.png[87.04K]
1600153812504.png[83.09K]
1600153834643.png[32.69K]
1600155927787.png[5.55K]
1600158621508.png[10.56K]
1600160323530.png[27.52K]
1600163604354.png[48.62K]
1600165628009.png[12.45K]
1600220432109.png[25.24K]
1600220569460.png[61.08K]
1600220684767.png[33.58K]
1600222612342.png[44.84K]
1600222910671.png[23.07K]
1600225250287.png[26.60K]
1600230014690.png[16.53K]
1600230178023.png[12.18K]
1600239845813.png[24.41K]
1600239904204.png[7.77K]
1600244500027.png[31.37K]
1600250431801.png[6.75K]
1600391852163.png[26.60K]
1600392271493.png[22.80K]
1600392395158.png[23.15K]
1600401674293.png[12.92K]
1600411272886.png[14.35K]
1600412269672.png[18.17K]
1600412364599.png[40.32K]
1600412474482.png[18.20K]
1600421139941.png[14.06K]
1600421143008.png[14.06K]
1600475434351.png[25.92K]
1600478241795.png[41.22K]
1600478862252.png[25.74K]
1600479952192.png[430.74K]
1600480303911.png[109.19K]
1600480671825.png[182.83K]
1600481068286.png[140.64K]
1600481875498.png[38.21K]
1600481930002.png[52.59K]
1600482325436.png[68.11K]
1600482553528.png[78.87K]
1600485493651.png[71.11K]
1600497342305.png[211.37K]
1600497715254.png[54.21K]
1600499230817.png[123.62K]
1600499242710.png[109.59K]
1600654125933.png[17.89K]
1600659842427.png[38.13K]
1600670324764.png[1.42M]
1600670977038.png[13.91K]
1600671325617.png[14.97K]
1600738249464.png[63.12K]
1600748522319.png[82.43K]
1600749057568.png[89.82K]
1600755646354.png[122.88K]
1600755664226.png[308.84K]
1600755674552.png[112.51K]
1600755698427.png[112.34K]
1600755778280.png[1.19M]
1600755910658.png[66.41K]
1600755933925.png[46.15K]
1600757215815.png[18.18K]
1600758730856.png[44.43K]
1600766092025.png[34.96K]
1600910247620.png[16.00K]
1600910278570.png[44.20K]
1600910468491.png[112.16K]
1600912232838.png[20.48K]
1600912694467.png[51.20K]
1600913220297.png[49.36K]
1600914007629.png[138.39K]
1600941680213.png[3.71K]
68747470733a2f2f696d672d626c6f672e6373646e696d672e636e2f32303139313130343130313733353934372e706e67.png[150.30K]
68747470733a2f2f696d672d626c6f672e6373646e696d672e636e2f32303139313130343130313733353934372e706e67-1600758329615.png[150.30K]
rm-ha-overview.png[30.01K]
yarn_architecture.gif[32.26K]
yarn_architecture-1599884674805.gif[32.26K]
03_笔记.zip[53.86K]
A01-RDD.png[40.53K]
A01-RDD#reduceByKey函数.png[24.62K]
A01-SparkStreaming状态统计.png[24.53K]
A01-SparkStreaming工作原理(BatchInterval和BlockInterval).png[24.97K]
A01-窗口生成规则.png[44.93K]
A01-分区操作函数.png[21.56K]
A01-数据本地性.png[30.39K]
A02-反压机制.png[21.95K]
A03-动态资源管理.png[46.58K]
A04-日志管理.png[42.14K]
B01-RDD共享变量.png[39.67K]
B01-RDD#reduce函数.png[32.37K]
B01-Standalone中cluster模式.png[29.62K]
B01-窗口含义.png[22.92K]
B01-窗口统计:滚动窗口.png[17.44K]
B02-RDD广播变量.png[137.60K]
B02-RDD#aggregate.png[45.78K]
B02-SparkStreaming滑动窗口.png[19.31K]
B02-窗口统计:滑动窗口.png[18.45K]
C01-Kafka消费者API.png[39.48K]
C01-SparkSQL外部数据源.png[36.16K]
C01-词频统计中RDD.png[31.18K]
C01-结构化编程模型.png[46.69K]
C02-集成Kafka时OldConsumer两种方式区别.png[62.96K]
C03-Direct方式消费数据.png[42.83K]
SparkDay06:SparkStreaming.md[11.35K]
Spark_Day01:Spark基础环境.md[14.20K]
Spark_Day02:数据结构RDD.md[14.04K]
Spark_Day03:SparkCore.md[12.94K]
Spark_Day04:SparkSQL.md[21.08K]
Spark_Day05:离线综合实战.md[17.44K]
Spark_Day07:SparkStreaming.md[12.39K]
Spark_Day08:StructuredStreaming.md[9.46K]
Spark_Day09:实时综合案例.md[16.49K]
Spark_Day10:实时综合案例.md[9.11K]
04_代码[220.37K]
参考代码[49.12K]
ckpt[10.57K]
StreamingStateCkpt.scala[5.70K]
StreamingTemplate.scala[4.86K]
hbase[12.42K]
HBaseDao.scala[3.87K]
RealTimeOrder2HBase.scala[5.03K]
ZkOffsetsUtils.scala[3.52K]
mock[5.68K]
MockOrderProducer.scala[5.08K]
OrderRecord.scala[0.59K]
offset[10.08K]
OffsetsUtils.scala[4.25K]
StreamingManagerOffsets.scala[5.83K]
resources[4.21K]
config.properties[2.13K]
log4j.properties[2.08K]
utils[6.18K]
JedisUtils.scala[1.00K]
SparkUtils.scala[2.37K]
StreamingUtils.scala[2.82K]
bigdata-spark.zip[15.87K]
spark-day03.zip[26.21K]
spark-day04.zip[22.72K]
spark-day05(原版).zip[8.70K]
spark-day05.zip[21.41K]
spark-day07.zip[35.60K]
spark-day08.zip[21.93K]
spark-day09.zip[18.82K]
05_数据[275.56M]
datas[166.21M]
filter[0.21K]
datas.input[0.21K]
sogou[154.39M]
SogouQ.reduced[153.48M]
SogouQ.sample[926.08K]
wordcount[0.17K]
wordcount.data[0.17K]
dataset[11.83M]
ip2region.db[6.74M]
pmt.json[5.08M]
hive[1.26K]
dept.txt[0.08K]
emp.txt[0.64K]
EMP-DEPT表.sql[0.55K]
iot[2.28K]
DeviceData.scala[0.48K]
MockIotDatas.scala[1.80K]
json[4.49M]
2015-03-01-11.json.gz[4.49M]
ml-100k[4.03M]
README[6.59K]
u.dat[1.89M]
u.data[1.89M]
u.item[230.83K]
u.user[22.10K]
ml-1m[23.75M]
movies.dat[167.29K]
ratings.dat[23.45M]
README[5.45K]
users.dat[131.22K]
mock[2.87K]
MockStationLog.scala[2.16K]
StationLog.scala[0.71K]
ratings100[77.05M]
part-00000[789.07K]
part-00001[789.15K]
part-00002[789.11K]
part-00003[789.10K]
part-00004[789.16K]
part-00005[789.15K]
part-00006[789.13K]
part-00007[789.09K]
part-00008[789.15K]
part-00009[789.14K]
part-00010[789.00K]
part-00011[788.98K]
part-00012[789.01K]
part-00013[789.00K]
part-00014[788.97K]
part-00015[788.98K]
part-00016[788.94K]
part-00017[789.10K]
part-00018[789.08K]
part-00019[788.99K]
part-00020[789.08K]
part-00021[789.01K]
part-00022[789.01K]
part-00023[788.99K]
part-00024[788.96K]
part-00025[788.99K]
part-00026[788.93K]
part-00027[788.97K]
part-00028[789.00K]
part-00029[788.94K]
part-00030[788.95K]
part-00031[788.92K]
part-00032[788.89K]
part-00033[788.89K]
part-00034[788.91K]
part-00035[788.92K]
part-00036[788.85K]
part-00037[788.89K]
part-00038[788.90K]
part-00039[788.80K]
part-00040[788.90K]
part-00041[788.91K]
part-00042[788.94K]
part-00043[789.08K]
part-00044[789.01K]
part-00045[789.07K]
part-00046[788.98K]
part-00047[789.03K]
part-00048[789.03K]
part-00049[789.01K]
part-00050[788.98K]
part-00051[789.05K]
part-00052[789.11K]
part-00053[789.23K]
part-00054[789.19K]
part-00055[789.08K]
part-00056[789.00K]
part-00057[789.06K]
part-00058[789.09K]
part-00059[789.15K]
part-00060[789.06K]
part-00061[789.12K]
part-00062[789.13K]
part-00063[789.08K]
part-00064[788.99K]
part-00065[788.93K]
part-00066[788.93K]
part-00067[788.93K]
part-00068[788.90K]
part-00069[788.92K]
part-00070[789.12K]
part-00071[789.07K]
part-00072[788.97K]
part-00073[788.84K]
part-00074[788.90K]
part-00075[788.84K]
part-00076[788.84K]
part-00077[788.91K]
part-00078[788.99K]
part-00079[789.07K]
part-00080[789.02K]
part-00081[788.88K]
part-00082[788.80K]
part-00083[788.88K]
part-00084[788.87K]
part-00085[788.85K]
part-00086[788.85K]
part-00087[788.66K]
part-00088[788.71K]
part-00089[788.69K]
part-00090[788.63K]
part-00091[788.77K]
part-00092[788.88K]
part-00093[788.87K]
part-00094[788.81K]
part-00095[788.95K]
part-00096[788.89K]
part-00097[788.96K]
part-00098[788.90K]
part-00099[789.00K]
resources[7.25K]
employees.json[0.13K]
full_user.avsc[0.23K]
kv1.txt[5.68K]
people.json[0.07K]
people.txt[0.03K]
user.avsc[0.18K]
users.avro[0.33K]
users.parquet[0.60K]
wordcount[0.17K]
wordcount.data[0.17K]
资源文件和工具类[12.49K]
config[1.34K]
ApplicationConfig.scala[1.34K]
resources[1.93K]
config.properties[0.63K]
log4j.properties[1.30K]
utils[1.80K]
SparkUtils.scala[1.80K]
ReportSQLConstant.scala[7.42K]
06_软件[398.20M]
BuildSpark.lnk.重命名[0.92K]
kafkatool_64bit.zip[58.88M]
scala-2.11.12.tgz[27.77M]
scala-2.11.12.zip[27.82M]
spark-2.4.5.tgz[14.93M]
spark-2.4.5-bin-cdh5.16.2-2.11.tgz[268.81M]
07_资料[88.05M]
jedis[1.02K]
JedisUtils.scala[1.02K]
spark-redis-master[372.48K]
build[9.21K]
sbt[4.12K]
sbt-launch-lib.bash[5.09K]
dev[1.55K]
change-scala-version.sh[1.55K]
doc[41.06K]
cluster.md[0.73K]
configuration.md[0.83K]
dataframe.md[11.83K]
dev.md[0.94K]
getting-started.md[2.58K]
java.md[3.16K]
python.md[1.40K]
rdd.md[7.90K]
streaming.md[6.01K]
structured-streaming.md[5.68K]
project[0.29K]
build.properties[0.08K]
plugins.sbt[0.21K]
src[290.63K]
main[105.32K]
resources[0.05K]
META-INF[0.05K]
services[0.05K]
org.apache.spark.sql.sources.DataSourceRegister[0.05K]
scala[105.27K]
com[71.54K]
redislabs[71.54K]
provider[71.54K]
redis[71.54K]
partitioner[0.33K]
RedisPartition.scala[0.28K]
RedisPartitioner.scala[0.05K]
rdd[16.70K]
RedisRDD.scala[16.70K]
streaming[11.08K]
package.scala[0.10K]
RedisInputDStream.scala[2.33K]
redisStreamingFunctions.scala[2.47K]
RedisStreamReceiver.scala[6.18K]
util[10.32K]
CollectionUtils.scala[0.70K]
ConnectionUtils.scala[2.22K]
JsonUtils.scala[0.33K]
Logging.scala[0.89K]
ParseUtils.scala[1.38K]
PipelineUtils.scala[3.92K]
StreamUtils.scala[0.89K]
ConnectionPool.scala[1.44K]
package.scala[0.20K]
RedisConfig.scala[9.93K]
redisFunctions.scala[21.53K]
org[33.72K]
apache[33.72K]
spark[33.72K]
sql[33.72K]
redis[33.72K]
stream[14.26K]
RedisSource.scala[5.90K]
RedisSourceConfig.scala[1.49K]
RedisSourceOffset.scala[1.52K]
RedisSourceRdd.scala[1.16K]
RedisSourceTypes.scala[0.40K]
RedisStreamProvider.scala[1.20K]
RedisStreamReader.scala[2.60K]
BinaryRedisPersistence.scala[1.29K]
DefaultSource.scala[1.76K]
HashRedisPersistence.scala[1.65K]
redis.scala[1.28K]
RedisPersistence.scala[1.43K]
RedisSourceRelation.scala[12.05K]
test[185.30K]
resources[102.13K]
blog[10.06K]
log4j.properties[0.73K]
test.csv[91.34K]
scala[83.17K]
com[69.81K]
redislabs[69.81K]
provider[69.81K]
redis[69.81K]
df[45.24K]
benchmark[7.30K]
cluster[2.26K]
BinaryModelManyValueClusterBenchmarkSuite.scala[0.56K]
BinaryModelSingleValueClusterBenchmarkSuite.scala[0.56K]
HashModelManyValueClusterBenchmarkSuite.scala[0.57K]
HashModelSingleValueClusterBenchmarkSuite.scala[0.57K]
DataframeBenchmarkSuite.scala[3.67K]
ManyValueBenchmarkSuite.scala[0.88K]
SingleValueBenchmarkSuite.scala[0.50K]
cluster[2.48K]
BinaryDataframeClusterSuite.scala[0.77K]
CsvDataframeClusterSuite.scala[0.24K]
DataframeClusterSuite.scala[0.23K]
FilteredDataframeClusterSuite.scala[0.31K]
HashDataframeClusterSuite.scala[0.68K]
SparkSqlClusterSuite.scala[0.26K]
standalone[2.44K]
BinaryDataframeStandaloneSuite.scala[0.73K]
CsvDataframeStandaloneSuite.scala[0.25K]
DataframeStandaloneSuite.scala[0.24K]
FilteredDataframeStandaloneSuite.scala[0.32K]
HashDataframeStandaloneSuite.scala[0.64K]
SparkSqlStandaloneSuite.scala[0.27K]
BinaryDataframeSuite.scala[4.11K]
CsvDataframeSuite.scala[1.08K]
DataframeSuite.scala[9.63K]
FilteredDataframeSuite.scala[1.33K]
HashDataframeSuite.scala[11.01K]
RedisDataframeSuite.scala[2.11K]
SparkSqlSuite.scala[3.75K]
env[1.75K]
Env.scala[0.46K]
RedisClusterEnv.scala[0.63K]
RedisStandaloneEnv.scala[0.66K]
rdd[8.34K]
cluster[0.69K]
RedisKeysClusterSuite.scala[0.23K]
RedisRDDClusterSuite.scala[0.23K]
RedisRddExtraClusterSuite.scala[0.24K]
standalone[0.73K]
RedisKeysStandaloneSuite.scala[0.24K]
RedisRddExtraStandaloneSuite.scala[0.25K]
RedisRDDStandaloneSuite.scala[0.24K]
RedisKeysSuite.scala[1.22K]
RedisRddExtraSuite.scala[1.32K]
RedisRddSuite.scala[4.38K]
stream[6.64K]
cluster[0.24K]
RedisXStreamClusterSuite.scala[0.24K]
standalone[0.25K]
RedisXStreamStandaloneSuite.scala[0.25K]
RedisXStreamSuite.scala[6.15K]
util[4.53K]
BenchmarkTest.java[0.38K]
CollectionUtilsTest.scala[0.62K]
ConnectionUtilsTest.scala[0.78K]
EntityId.scala[0.29K]
JsonUtilsTest.scala[0.29K]
Person.scala[1.18K]
TestUtils.scala[0.99K]
RedisBenchmarks.scala[0.68K]
RedisConfigSuite.scala[1.07K]
SparkRedisSuite.scala[0.73K]
SparkStreamingRedisSuite.scala[0.83K]
org[13.37K]
apache[13.37K]
spark[13.37K]
sql[13.37K]
redis[13.37K]
stream[12.91K]
cluster[0.25K]
RedisStreamSourceClusterSuite.scala[0.25K]
standalone[0.27K]
RedisStreamSourceStandaloneSuite.scala[0.27K]
RedisConsumerOffsetTest.scala[0.58K]
RedisSourceConfigSuite.scala[1.54K]
RedisSourceTest.scala[0.75K]
RedisStreamSourceSuite.scala[9.52K]
RedisSourceRelationTest.scala[0.46K]
.gitignore[0.41K]
.travis.yml[0.54K]
LICENSE[1.48K]
Makefile[3.39K]
pom.xml[11.93K]
README.md[3.84K]
scalastyle-config.xml[8.16K]
Spark框架论文[1.83M]
EECS-2011-82.pdf[0.98M]
nsdi_spark.pdf[865.54K]
参考代码[19.46K]
mock[4.52K]
MockSearchLogs.scala[3.99K]
SearchLog.scala[0.53K]
offset[10.08K]
OffsetsUtils.scala[4.25K]
StreamingManagerOffsets.scala[5.83K]
StreamingTemplate.scala[4.86K]
流式计算引擎论文[3.09M]
ApacheFlink:StreamandBatchProcessinginaSingleEngine.pdf[388.04K]
DiscretizedStreams:Fault-TolerantStreamingComputationatScale.pdf[739.02K]
[email protected][1.99M]
流式系统[26.26M]
StreamingSystem第二章【TheWhat-Where-When-andHowofDataProcessing】.pdf[15.88M]
StreamingSystem第一章【Streaming101】.pdf[10.38M]
an-introduction-to-higher-order-functions-in-spark-sql.pdf[398.20K]
ApacheSpark2.4内置的Avro数据源介绍.mhtml[2.29M]
ApacheSpark2.4新增内置函数和高阶函数使用介绍.mhtml[2.91M]
bk_spark-component-guide.pdf[1.67M]
Google-Bigtable中文版_1.0.pdf[837.70K]
Google-File-System中文版_1.0.pdf[1.18M]
Google-MapReduce中文版_1.0.pdf[653.85K]
ip2region解析库概述.png[548.92K]
Job提交过程.png[540.08K]
KafkaConsumer-Zookeper.png[365.56K]
mysql练习题.md[20.15K]
RDDOperationFunctions.xmind[254.57K]
SparkSQL,Built-inFunctions.mhtml[576.96K]
spark-redis.png[22.58K]
spark-redis-master.zip[144.38K]
Spark-Shuffle前世今生.xmind[113.33K]
StreamingSystemsTheWhat,Where,When,andHowofLarge-ScaleDataProcessing.epub[31.56M]
StructuredStreaming编程向导.mhtml[826.08K]
wordcount-jobs-job.png[74.81K]
淘宝技术这十年.pdf[11.01M]
运行Spark-shell,解决Unabletoloadnative-hadooplibraryforyourplatform.mhtml[636.44K]
08_提交[42.98M]
ads_etl[270.63K]
lib[268.77K]
config-1.2.1.jar[214.41K]
ip2region-1.7.2.jar[16.34K]
spark-ads_2.11-1.0.0.jar[38.02K]
job.properties[0.67K]
workflow.xml[1.18K]
ads_report[3.85M]
lib[3.85M]
config-1.2.1.jar[214.41K]
mysql-connector-java-8.0.19.jar[2.25M]
protobuf-java-3.6.1.jar[1.36M]
spark-ads_2.11-1.0.0.jar[38.02K]
job.properties[0.89K]
workflow.xml[1.18K]
cron_ads_etl[2.26K]
coordinator.xml[0.32K]
job.properties[0.77K]
workflow.xml[1.18K]
cron_ads_report[2.48K]
coordinator.xml[0.32K]
job.properties[0.98K]
workflow.xml[1.18K]
jars[3.83M]
config-1.2.1.jar[214.41K]
ip2region-1.7.2.jar[16.34K]
mysql-connector-java-8.0.19.jar[2.25M]
protobuf-java-3.6.1.jar[1.36M]
submit[33.06M]
order-es[3.24M]
config-1.2.1.jar[214.41K]
elasticsearch-spark-20_2.11-6.0.0.jar[735.73K]
kafka-clients-2.0.0.jar[1.81M]
spark-sql-kafka-0-10_2.11-2.4.5.jar[522.38K]
submit-es.sh[0.99K]
order-etl[2.54M]
config-1.2.1.jar[214.41K]
ip2region-1.7.2.jar[16.34K]
kafka-clients-2.0.0.jar[1.81M]
spark-sql-kafka-0-10_2.11-2.4.5.jar[522.38K]
submit-etl.sh[1.13K]
order-hbase[17.17M]
config-1.2.1.jar[214.41K]
fastjson-1.2.47.jar[533.76K]
hbase-client-1.2.0-cdh5.16.2.jar[1.27M]
hbase-common-1.2.0-cdh5.16.2.jar[573.30K]
hbase-hadoop2-compat-1.2.0-cdh5.16.2.jar[99.08K]
hbase-hadoop-compat-1.2.0-cdh5.16.2.jar[40.74K]
hbase-prefix-tree-1.2.0-cdh5.16.2.jar[99.60K]
hbase-protocol-1.2.0-cdh5.16.2.jar[4.48M]
hbase-server-1.2.0-cdh5.16.2.jar[4.19M]
high-scale-lib-1.1.1.jar[93.73K]
htrace-core-3.2.0-incubating.jar[1.42M]
kafka_2.11-0.8.2.1.jar[3.77M]
metrics-core-2.2.0.jar[80.20K]
spark-streaming-kafka-0-8_2.11-2.4.5.jar[295.90K]
submit-hbase.sh[1.55K]
zkclient-0.3.jar[62.51K]
order-report[3.25M]
commons-pool2-2.0.jar[104.55K]
config-1.2.1.jar[214.41K]
jedis-3.2.0.jar[640.19K]
kafka-clients-2.0.0.jar[1.81M]
spark-sql-kafka-0-10_2.11-2.4.5.jar[522.38K]
submit-report.sh[1.06K]
config.properties[2.13K]
ip2region.db[6.74M]
orders-app-1.0.0.jar[102.43K]
wf_spark_pi[1.93M]
lib[1.92M]
spark-examples_2.11-2.4.5.jar[1.92M]
job.properties[0.64K]
workflow.xml[1.18K]
config.properties[0.63K]
oozie-spark2.sh[1.76K]
spark-ads_2.11-1.0.0.jar[38.02K]
spark-oozie-wf.xml[1.23K]
submit-app.sh[3.84K]
spark_day00_虚拟机[44.20G]
SparkNode01[39.23G]
NewCentOS-cl1.vmdk[0.85K]
NewCentOS-cl1-000001.vmdk[0.68K]
NewCentOS-cl1-000001-s001.vmdk[1.48G]
NewCentOS-cl1-000001-s002.vmdk[2.55G]
NewCentOS-cl1-000001-s003.vmdk[1.59G]
NewCentOS-cl1-000001-s004.vmdk[2.24G]
NewCentOS-cl1-000001-s005.vmdk[1.88G]
NewCentOS-cl1-000001-s006.vmdk[75.13M]
NewCentOS-cl1-000001-s007.vmdk[1.38G]
NewCentOS-cl1-000001-s008.vmdk[320.00K]
NewCentOS-cl1-000002.vmdk[0.67K]
NewCentOS-cl1-000002-s001.vmdk[263.19M]
NewCentOS-cl1-000002-s002.vmdk[1.42G]
NewCentOS-cl1-000002-s003.vmdk[1.59G]
NewCentOS-cl1-000002-s004.vmdk[2.14G]
NewCentOS-cl1-000002-s005.vmdk[100.38M]
NewCentOS-cl1-000002-s006.vmdk[81.06M]
NewCentOS-cl1-000002-s007.vmdk[529.06M]
NewCentOS-cl1-000002-s008.vmdk[320.00K]
NewCentOS-cl1-000003.vmdk[0.68K]
NewCentOS-cl1-000003-s001.vmdk[9.44M]
NewCentOS-cl1-000003-s002.vmdk[9.63M]
NewCentOS-cl1-000003-s003.vmdk[8.06M]
NewCentOS-cl1-000003-s004.vmdk[576.00K]
NewCentOS-cl1-000003-s005.vmdk[10.81M]
NewCentOS-cl1-000003-s006.vmdk[7.13M]
NewCentOS-cl1-000003-s007.vmdk[15.81M]
NewCentOS-cl1-000003-s008.vmdk[320.00K]
NewCentOS-cl1-000004.vmdk[0.68K]
NewCentOS-cl1-000004-s001.vmdk[21.00M]
NewCentOS-cl1-000004-s002.vmdk[11.06M]
NewCentOS-cl1-000004-s003.vmdk[17.19M]
NewCentOS-cl1-000004-s004.vmdk[512.00K]
NewCentOS-cl1-000004-s005.vmdk[23.56M]
NewCentOS-cl1-000004-s006.vmdk[15.06M]
NewCentOS-cl1-000004-s007.vmdk[6.25M]
NewCentOS-cl1-000004-s008.vmdk[320.00K]
NewCentOS-cl1-000005.vmdk[0.68K]
NewCentOS-cl1-000005-s001.vmdk[402.19M]
NewCentOS-cl1-000005-s002.vmdk[138.50M]
NewCentOS-cl1-000005-s003.vmdk[348.13M]
NewCentOS-cl1-000005-s004.vmdk[1.19M]
NewCentOS-cl1-000005-s005.vmdk[113.19M]
NewCentOS-cl1-000005-s006.vmdk[23.69M]
NewCentOS-cl1-000005-s007.vmdk[56.38M]
NewCentOS-cl1-000005-s008.vmdk[320.00K]
NewCentOS-cl1-000006.vmdk[0.68K]
NewCentOS-cl1-000006-s001.vmdk[1.22G]
NewCentOS-cl1-000006-s002.vmdk[855.38M]
NewCentOS-cl1-000006-s003.vmdk[656.94M]
NewCentOS-cl1-000006-s004.vmdk[2.56M]
NewCentOS-cl1-000006-s005.vmdk[724.31M]
NewCentOS-cl1-000006-s006.vmdk[58.75M]
NewCentOS-cl1-000006-s007.vmdk[225.94M]
NewCentOS-cl1-000006-s008.vmdk[320.00K]
NewCentOS-cl1-000007.vmdk[0.68K]
NewCentOS-cl1-000007-s001.vmdk[7.38M]
NewCentOS-cl1-000007-s002.vmdk[300.63M]
NewCentOS-cl1-000007-s003.vmdk[19.06M]
NewCentOS-cl1-000007-s004.vmdk[640.00K]
NewCentOS-cl1-000007-s005.vmdk[16.94M]
NewCentOS-cl1-000007-s006.vmdk[5.94M]
NewCentOS-cl1-000007-s007.vmdk[16.44M]
NewCentOS-cl1-000007-s008.vmdk[320.00K]
NewCentOS-cl1-000008.vmdk[0.68K]
NewCentOS-cl1-000008-s001.vmdk[184.13M]
NewCentOS-cl1-000008-s002.vmdk[369.13M]
NewCentOS-cl1-000008-s003.vmdk[155.25M]
NewCentOS-cl1-000008-s004.vmdk[576.00K]
NewCentOS-cl1-000008-s005.vmdk[33.88M]
NewCentOS-cl1-000008-s006.vmdk[62.13M]
NewCentOS-cl1-000008-s007.vmdk[476.81M]
NewCentOS-cl1-000008-s008.vmdk[320.00K]
NewCentOS-cl1-000009.vmdk[0.68K]
NewCentOS-cl1-000009-s001.vmdk[1.92G]
NewCentOS-cl1-000009-s002.vmdk[1.79G]
NewCentOS-cl1-000009-s003.vmdk[1.25G]
NewCentOS-cl1-000009-s004.vmdk[960.00K]
NewCentOS-cl1-000009-s005.vmdk[2.72G]
NewCentOS-cl1-000009-s006.vmdk[75.38M]
NewCentOS-cl1-000009-s007.vmdk[581.75M]
NewCentOS-cl1-000009-s008.vmdk[320.00K]
NewCentOS-cl1-000011.vmdk[0.68K]
NewCentOS-cl1-000011-s001.vmdk[721.25M]
NewCentOS-cl1-000011-s002.vmdk[646.69M]
NewCentOS-cl1-000011-s003.vmdk[174.69M]
NewCentOS-cl1-000011-s004.vmdk[576.00K]
NewCentOS-cl1-000011-s005.vmdk[602.69M]
NewCentOS-cl1-000011-s006.vmdk[71.31M]
NewCentOS-cl1-000011-s007.vmdk[223.88M]
NewCentOS-cl1-000011-s008.vmdk[320.00K]
NewCentOS-cl1-000012.vmdk[0.63K]
NewCentOS-cl1-000012-s001.vmdk[512.00K]
NewCentOS-cl1-000012-s002.vmdk[512.00K]
NewCentOS-cl1-000012-s003.vmdk[512.00K]
NewCentOS-cl1-000012-s004.vmdk[512.00K]
NewCentOS-cl1-000012-s005.vmdk[512.00K]
NewCentOS-cl1-000012-s006.vmdk[512.00K]
NewCentOS-cl1-000012-s007.vmdk[512.00K]
NewCentOS-cl1-000012-s008.vmdk[320.00K]
NewCentOS-cl1-s001.vmdk[1.70G]
NewCentOS-cl1-s002.vmdk[512.00K]
NewCentOS-cl1-s003.vmdk[1.24G]
NewCentOS-cl1-s004.vmdk[512.00K]
NewCentOS-cl1-s005.vmdk[881.25M]
NewCentOS-cl1-s006.vmdk[771.88M]
NewCentOS-cl1-s007.vmdk[161.69M]
NewCentOS-cl1-s008.vmdk[320.00K]
spark-node01.nvram[8.48K]
spark-node01.vmsd[3.60K]
spark-node01.vmx[2.72K]
spark-node01.vmxf[0.26K]
spark-node01-Snapshot18.vmsn[27.56K]
spark-node01-Snapshot19.vmsn[27.56K]
spark-node01-Snapshot2.vmsn[27.50K]
spark-node01-Snapshot21.vmsn[27.56K]
spark-node01-Snapshot22.vmsn[27.58K]
spark-node01-Snapshot23.vmsn[27.58K]
spark-node01-Snapshot25.vmsn[27.56K]
spark-node01-Snapshot7.vmsn[27.57K]
vmware.log[257.34K]
vmware-0.log[259.86K]
vmware-1.log[254.14K]
vmware-2.log[476.81K]
SparkNode02[2.82G]
NewCentOS-cl2.vmdk[0.66K]
NewCentOS-cl2-000001.vmdk[0.62K]
NewCentOS-cl2-000001-s001.vmdk[512.00K]
NewCentOS-cl2-000001-s002.vmdk[512.00K]
NewCentOS-cl2-000001-s003.vmdk[512.00K]
NewCentOS-cl2-000001-s004.vmdk[512.00K]
NewCentOS-cl2-000001-s005.vmdk[512.00K]
NewCentOS-cl2-000001-s006.vmdk[512.00K]
NewCentOS-cl2-000001-s007.vmdk[512.00K]
NewCentOS-cl2-000001-s008.vmdk[320.00K]
NewCentOS-cl2-000003.vmdk[0.67K]
NewCentOS-cl2-000003-s001.vmdk[17.19M]
NewCentOS-cl2-000003-s002.vmdk[176.81M]
NewCentOS-cl2-000003-s003.vmdk[470.44M]
NewCentOS-cl2-000003-s004.vmdk[512.00K]
NewCentOS-cl2-000003-s005.vmdk[145.50M]
NewCentOS-cl2-000003-s006.vmdk[7.38M]
NewCentOS-cl2-000003-s007.vmdk[422.81M]
NewCentOS-cl2-000003-s008.vmdk[320.00K]
NewCentOS-cl2-s001.vmdk[269.06M]
NewCentOS-cl2-s002.vmdk[51.44M]
NewCentOS-cl2-s003.vmdk[421.69M]
NewCentOS-cl2-s004.vmdk[512.00K]
NewCentOS-cl2-s005.vmdk[618.63M]
NewCentOS-cl2-s006.vmdk[76.13M]
NewCentOS-cl2-s007.vmdk[202.81M]
NewCentOS-cl2-s008.vmdk[320.00K]
spark-node02.nvram[8.48K]
spark-node02.vmsd[1.14K]
spark-node02.vmx[2.79K]
spark-node02.vmxf[0.26K]
spark-node02-Snapshot4.vmsn[27.62K]
spark-node02-Snapshot5.vmsn[27.62K]
vmware.log[260.15K]
vmware-0.log[312.77K]
vmware-1.log[258.90K]
vmware-2.log[247.02K]
SparkNode03[2.15G]
NewCentOS-cl2.vmdk[0.66K]
NewCentOS-cl2-000001.vmdk[0.62K]
NewCentOS-cl2-000001-s001.vmdk[512.00K]
NewCentOS-cl2-000001-s002.vmdk[512.00K]
NewCentOS-cl2-000001-s003.vmdk[512.00K]
NewCentOS-cl2-000001-s004.vmdk[512.00K]
NewCentOS-cl2-000001-s005.vmdk[512.00K]
NewCentOS-cl2-000001-s006.vmdk[512.00K]
NewCentOS-cl2-000001-s007.vmdk[512.00K]
NewCentOS-cl2-000001-s008.vmdk[320.00K]
NewCentOS-cl2-000003.vmdk[0.67K]
NewCentOS-cl2-000003-s001.vmdk[29.63M]
NewCentOS-cl2-000003-s002.vmdk[465.63M]
NewCentOS-cl2-000003-s003.vmdk[13.88M]
NewCentOS-cl2-000003-s004.vmdk[512.00K]
NewCentOS-cl2-000003-s005.vmdk[148.13M]
NewCentOS-cl2-000003-s006.vmdk[7.94M]
NewCentOS-cl2-000003-s007.vmdk[299.50M]
NewCentOS-cl2-000003-s008.vmdk[320.00K]
NewCentOS-cl2-s001.vmdk[258.06M]
NewCentOS-cl2-s002.vmdk[4.94M]
NewCentOS-cl2-s003.vmdk[394.81M]
NewCentOS-cl2-s004.vmdk[512.00K]
NewCentOS-cl2-s005.vmdk[221.50M]
NewCentOS-cl2-s006.vmdk[74.19M]
NewCentOS-cl2-s007.vmdk[275.75M]
NewCentOS-cl2-s008.vmdk[320.00K]
spark-node03.nvram[8.48K]
spark-node03.vmsd[1.15K]
spark-node03.vmx[2.78K]
spark-node03.vmxf[0.26K]
spark-node03-Snapshot4.vmsn[27.62K]
spark-node03-Snapshot5.vmsn[27.62K]
vmware.log[255.59K]
vmware-0.log[313.39K]
vmware-1.log[261.47K]
vmware-2.log[248.22K]
Spark基础环境补充资料[99.53M]
第二部分SparkCore[8.17M]
02-第二部分【SparkCore】_V1.0.docx[8.17M]
第一部分Spark基础环境[13.79M]
01-V8.0:第一部分【Spark基础环境】_V1.0.xmind[423.22K]
02-V8.0:第一部分【Spark基础环境】_V1.0.docx[9.21M]
03-V8.0:第一部分【Spark基础环境】_V1.0.pptx[4.17M]
01_第一部分【Spark基础环境】教案_V1.2.pdf[4.89M]
01-第三部分【SparkSQL】_V1.0.xmind[538.70K]
01-第四部分【离线综合实战】_V1.0.xmind[547.04K]
02_第二部分【SparkCore】教案_V1.2.pdf[4.82M]
02-第三部分【SparkSQL】_V1.0.docx[6.98M]
02-第四部分【离线综合实战】_V1.0.docx[4.77M]
03_第三部分【SparkSQL】教案_V1.2.pdf[4.34M]
03-第三部分【SparkSQL】_V1.0.pptx[4.82M]
03-第四部分【离线综合实战】_V1.0.pptx[1.75M]
04_第四部分【离线综合实战】教案_V1.2.pdf[2.80M]
05_第五部分【SparkStreaming】教案_V1.2.pdf[5.61M]
0501-第五部分【SparkStreaming】.xmind[580.58K]
0502-第五部分【SparkStreaming】_V1.0.docx[8.73M]
0503-第五部分【SparkStreaming】_V1.0.pptx[3.94M]
06_第六部分【StructuredStreaming】教案_V1.2.pdf[4.14M]
0601-第六部分【StructuredStreaming】_V1.0.xmind[624.76K]
0602-第六部分【StructuredStreaming】_V1.0.docx[5.90M]
0603-第六部分【StructuredStreaming】_V1.0.pptx[3.42M]
07_第七部分【实时综合实战】教案_V1.2.pdf[2.95M]
0701-第七部分【实时综合实战】_V1.0.xmind[648.71K]
0702-第七部分【实时综合案例】_V1.0.docx[3.06M]
0703-第四部分【实时综合实战】_V1.0.pptx[1.77M]
软件包[22.85G]
DataGrip资料[321.59M]
jetbrains-agent[2.47M]
lib[2.33M]
ACTIVATION_CODE.txt[3.59K]
important.txt[0.28K]
jetbrains-agent.jar[2.33M]
sha1sum.txt[0.06K]
resetal[1.50K]
reset_jetbrainsal_mac_linux.sh[0.50K]
reset_jetbrainsal_windows.vbs[1.00K]
ChangeLogs.txt[0.93K]
LICENSE[21.84K]
README.pdf[111.39K]
README.txt[4.46K]
datagrip-2019.1.4.exe[301.49M]
DataGrip激活码.txt[3.04K]
JetbrainsCrack.jar[837.10K]
resources_cn.jar[16.82M]
finalshell[69.93M]
finalshell_install.exe[69.93M]
Mysql8.0[512.37M]
4_安装Mysql8.0.docx[87.43K]
mysql-8.0.13-1.el7.x86_64.rpm-bundle.tar[507.27M]
mysqldump.exe[5.02M]
Superset[516.80M]
Anaconda3-2019.07-Linux-x86_64.sh[516.80M]
虚拟机资料[19.40G]
Centos_iso[4.21G]
CentOS-7-x86_64-DVD-1708.iso[4.21G]
VMware[405.55M]
01_安装VMware虚拟机.doc[642.00K]
VMware所有版本永久许可证激活秘钥.txt[1.17K]
VMware-workstation-full-12.5.6-5528349.exe[404.92M]
已搭建环境虚拟机[14.79G]
Centos7.4[14.79G]
node1.nvram[8.48K]
node1.vmdk[0.87K]
node1.vmsd[0.09K]
node1.vmx[2.74K]
node1.vmxf[0.25K]
node1-s001.vmdk[167.88M]
node1-s002.vmdk[3.05G]
node1-s003.vmdk[0.98G]
node1-s004.vmdk[2.22G]
node1-s005.vmdk[2.70G]
node1-s006.vmdk[1.38G]
node1-s007.vmdk[1.00G]
node1-s008.vmdk[547.19M]
node1-s009.vmdk[2.76G]
node1-s010.vmdk[512.00K]
node1-s011.vmdk[64.00K]
vmware.log[291.05K]
vmware-0.log[282.72K]
vmware-1.log[258.73K]
vmware-2.log[252.89K]
kettle.zip[2.06G]
07_第七部分【实时综合实战】提纲_V1.0.xmind[631.99K]
08_提交.lnk.重命名[1.07K]
Spark应用运行架构原理图.png[246.81K]
Spark_Day01.xmind[75.07K]
Spark_Day02.xmind[127.16K]
Spark_Day03.xmind[55.73K]
Spark_Day04.xmind[72.93K]
Spark_Day05.xmind[32.88K]
Spark_Day06.xmind[32.52K]
Spark_Day07.xmind[65.32K]
Spark_Day08.xmind[32.52K]
wordcount-jobs-job.png[74.81K]
第四部分【离线综合实战】.xmind[534.49K]
离线数据分析流程.png[43.87K]
课程下载地址:
精品课程,SVIP下载,下载前请阅读上方文件目录,链接下载为百度云网盘,如连接失效,可评论告知。