机器学习1802课程【10天】
课程介绍:
课程资源名称:机器学习1802课程【10天】,资源大小:5.18G,详见下发截图与文件目录。
课程文件目录:机器学习1802课程【10天】[5.18G]
day1 [380.74M]
demo [35.23K]
.idea [23.40K]
dictionaries [0.09K]
thinkpad.xml [0.09K]
inspectionprofiles
demo.iml [0.46K]
misc.xml [0.22K]
modules.xml [0.25K]
workspace.xml [22.38K]
kdtree.py [3.99K]
knn.py [1.76K]
s.py [0.16K]
sk_learn_knn0.py [5.77K]
work [0.16K]
video [369.65M]
01机器学习入门.wmv [67.08M]
02机器学习术语.wmv [51.04M]
03评估方法.wmv [28.35M]
04性能度量.wmv [29.59M]
05knn原理.wmv [25.65M]
06knn的实现.wmv [59.11M]
07kd树.wmv [49.17M]
08球树.wmv [13.17M]
09sklearn的实现.wmv [46.48M]
day10 [9.55M]
.ipynb_checkpoints [1.91M]
机器学习分类综合案例-checkpoint.ipynb [1.91M]
adult.data [3.79M]
adult.names [5.11K]
adult.test [1.91M]
xgboost_test.py [5.79K]
xgboost参数.docx [20.87K]
机器学习分类综合案例.ipynb [1.91M]
01ai入门.pptx [1.09M]
02k近邻.pptx [404.27K]
kdtree.py [3.97K]
knn.py [1.65K]
sk_learn_knn0.py [5.67K]
day2 [37.25M]
video [36.53M]
01线性回归.wmv [36.53M]
03线性回归.pptx [731.37K]
batch_gradient_descent.py [1.90K]
gradient_descent.py [1.37K]
gradient_descent0.py [1.18K]
leaner_regression_t1.py [0.73K]
linear_regression_simple.py [0.48K]
mini-batch_gradient_descent.py [1.97K]
sklearn_linearregression.py [1.06K]
stochastic_gradient_descent.py [2.09K]
day3 [355.83M]
c4.5_1.wmv [53.42M]
id3决策树-1.wmv [74.30M]
id3决策树-2.wmv [63.24M]
机器学习day3_笔记.docx [19.25K]
机器学习课程day3.pdf [2.66M]
决策树入门.wmv [58.99M]
逻辑回归.wmv [85.78M]
信息量入门1.wmv [17.42M]
day4 [1.39M]
.idea [18.61K]
inspectionprofiles
day4.iml [0.46K]
misc.xml [0.27K]
modules.xml [0.25K]
workspace.xml [17.63K]
.ipynb_checkpoints [9.68K]
chaid-checkpoint.ipynb [1.99K]
classification metrics-checkpoint.ipynb [7.68K]
aaa.png [14.68K]
chaid.ipynb [1.99K]
classification metrics.ipynb [7.68K]
data.csv [859.60K]
ddd.csv [504.41K]
tree.py [8.44K]
day5 [374.46M]
0727 [374.46M]
c4.5树.wmv [80.23M]
cart树.wmv [76.96M]
chaid决策树.wmv [25.72M]
day5笔记.docx [13.92K]
k-means.wmv [76.83M]
k-means教学视频.flv [6.89M]
个案相似性的计算.wmv [60.64M]
机器学习课程day5.pdf [1.97M]
决策树总结.wmv [45.21M]
day6 [541.14M]
codes_day6 [404.46K]
.idea [20.52K]
inspectionprofiles
codes_day6.iml [0.46K]
misc.xml [0.27K]
modules.xml [0.27K]
workspace.xml [19.53K]
car.csv [87.85K]
car.png
car.py [4.22K]
car1.py [3.34K]
classification metrics.ipynb [7.68K]
dbscan.py [1.04K]
get_data.ipynb [260.14K]
k-means.py [4.92K]
minibatchkmeans.py [4.68K]
preprocessing.ipynb [10.08K]
分类算法案例.wmv [192.03M]
机器学习课程day3-10_v1.pptx [8.92M]
聚类1.wmv [103.23M]
聚类2.wmv [86.45M]
聚类python1.wmv [150.11M]
day7 [2.38G]
8.1 [1.15G]
boostedtree.pdf [1.34M]
day_7笔记.docx [21.30K]
gbdt初步.docx [71.99K]
gbdt和xgboost网址.txt [0.06K]
rec007.avi [555.49M]
rec008.avi [182.96M]
rec009.avi [180.19M]
rec010.avi [252.65M]
rf,gbdt,xgboost比较.docx [17.85K]
机器学习课程day7.pdf [3.65M]
学习笔记0403.docx [528.89K]
gbdt初步.docx [71.99K]
rec001.avi [619.84M]
rec003.avi [188.29M]
rec004.avi [182.21M]
rec005.avi [264.52M]
rf,gbdt,xgboost比较.docx [17.85K]
机器学习课程day5.pptx [1.97M]
机器学习课程day7.pdf [3.65M]
day8 [1.85M]
.idea [24.46K]
inspectionprofiles
day8.iml [0.46K]
misc.xml [0.27K]
modules.xml [0.25K]
workspace.xml [23.49K]
ensemble [11.93K]
adaboost.py [0.27K]
bagging.py [0.04K]
ensemble_test.py [2.17K]
gbdt.py [4.50K]
random_forest.py [4.95K]
新建文件夹 [994.76K]
.ipynb_checkpoints [12.21K]
preprocessing-checkpoint.ipynb [12.21K]
classification metrics.ipynb [7.68K]
data.csv [859.59K]
feature selection.ipynb [5.23K]
joblib持久化存储.ipynb [6.96K]
kmeans异常值检测.ipynb [51.71K]
pipeline_一体化与处理过程.ipynb [12.30K]
preprocessing.ipynb [12.74K]
二值化标签特征.ipynb [7.17K]
交叉验证.ipynb [1.82K]
使用pipeline.ipynb [7.51K]
用k均值聚类量化图像.ipynb [9.84K]
data.csv [859.59K]
logistic_reg.py [3.13K]
day9 [1.15G]
day9_笔记.docx [21.52K]
pca意义.docx [355.77K]
rec012.avi [407.77M]
rec013.avi [143.74M]
rec014.avi [225.97M]
rec015.avi [260.04M]
rec016.avi [127.17M]
参考资料.txt [0.18K]
核函数的作用.wmv [4.72M]
机器学习课程day9.pdf [2.79M]
线性不可分可视化.wmv [5.58M]
课程下载地址:
精品课程,SVIP下载,下载前请阅读上方文件目录,链接下载为百度云网盘,如连接失效,可评论告知。