机器学习+深度学习【11套课程】

机器学习+深度学习【11套课程】

课程介绍:

课程资源名称:机器学习+深度学习【11套课程】,资源大小:47.52G,详见下发截图与文件目录。

机器学习+深度学习【11套课程】

机器学习+深度学习【11套课程】

课程文件目录:机器学习+深度学习【11套课程】[47.52G]

【备战秋招】面试刷题+算法强化训练营第三期(完结) [3.09G]

视频 [3.09G]

【svm】smo算法【,..ts [144.04M]

【svm】svm最优化问题【,】..ts [44.13M]

【svm】核函数【,..ts [86.35M]

【svm】几个重要的概念【 ..ts [24.71M]

【svm】线性可分svm【,】..ts [73.61M]

02-前向传播】..ts [54.44M]

03-损失函数选用..ts [28.82M]

04-反向传播1【,】..ts [87.54M]

05-反向传播2【,】..ts [63.20M]

1.ts [37.42M]

110.ts [19.39M]

144.ts [22.14M]

160.ts [35.26M]

167.ts [36.47M]

169.ts [12.59M]

17.ts [15.77M]

2.均匀采样、逆变换采样、拒绝采样【,】..ts [27.73M]

2.梯度下降简单的数学原理【,】..ts [30.55M]

208.ts [24.94M]

215.ts [62.40M]

230.ts [7.17M]

232.ts [39.20M]

241.ts [40.23M]

242.ts [55.88M]

260.ts [22.98M]

279.ts [34.41M]

3.mcmc采样【买,】..ts [56.54M]

3.随机梯度下降和小批量随机梯度下降【,】..ts [15.71M]

303.ts [7.23M]

309.ts [15.11M]

343.ts [11.81M]

347.ts [61.62M]

378.ts [23.77M]

409.ts [8.83M]

416.ts [17.40M]

455.ts [59.92M]

462.ts [10.16M]

5.常见的一些改进的优化算法【,】..ts [40.92M]

504.ts [5.49M]

513.ts [7.66M]

583.ts [9.78M]

64【,】..ts [19.57M]

69【,】..ts [41.79M]

695【,】..ts [18.89M]

70【,】..ts [10.34M]

75【,】..ts [51.54M]

crf的一些基础概念【,】..ts [90.33M]

crf具体介绍【,】..ts [113.08M]

gru&lstm【,..ts [30.16M]

gru和lstm【,..ts [13.50M]

hmm【,..ts [41.34M]

hmm的引出和问题的介绍【,.ts [41.34M]

hmm预测问题之维特比算法【,..ts [139.48M]

k-means【,..ts [67.13M]

pca和lda【,..ts [76.64M]

rnn【,】..ts [25.59M]

采样【买,】..ts [44.91M]

动量法【,】..ts [34.01M]

吉布斯采样【,】..ts [23.71M]

决策树【,】..ts [47.14M]

开营仪式——班主任部分【,】..ts [170.46M]

开营仪式——老师部分,】..ts [378.43M]

逻辑回归【,..ts [43.79M]

深度学习中的优化问题【,】..ts [23.02M]

绪论【买,..ts [30.23M]

硬间隔svm最优化问题的推导【,..ts [108.36M]

资料 [17.85K]

第二周:学习支持向量机【买课程】..txt [3.50K]

第三周:了解机器学习中的非监督学习算法【买课程】..txt [3.62K]

第四周:了解优化算法的原理【买买课程】..txt [3.04K]

第五周:学习前向神经【买课程】..txt [3.90K]

第一周:了解机器学习中的特征工程和模型评估【买课程】..txt [3.79K]

cnn_不能错过的10篇论文 [65.26M]

1311.2524v5_r_cnn.pdf [6.23M]

1311.2901v3_visualizing and understanding convolutional networks.pdf [34.56M]

1406.2661v1_generative adversarial nets.pdf [518.05K]

1409.1556v6_very deep convolutional networks.pdf [195.32K]

1412.2306v2_deep visual-semantic alignments for generating image descriptions.pdf [5.21M]

1504.08083_fast r-cnn.pdf [713.99K]

1506.01497v3_faster r-cnn.pdf [6.59M]

1506.02025_spatial transformer networks.pdf [7.89M]

1512.03385v1_deep residual learning for image recognition.pdf [800.18K]

4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf [1.35M]

szegedy_going_deeper_with_2015_cvpr_paper.pdf [1.24M]

cs224n 2019 [7.00G]

assignment [164.67M]

a1 [102.35K]

imgs [59.52K]

inner_product.png [16.00K]

svd.png [10.18K]

test_plot.png [33.34K]

exploring_word_vectors(1).ipynb [42.14K]

readme.txt [0.70K]

a2 [317.56K]

utils 买课程v,zszhp2019 [16.00K]

.ds_store [6.00K]

__init__.py

gradcheck.py [1.60K]

treebank.py [7.37K]

utils.py [1.03K]

collect_submission.sh [0.08K]

env.yml [0.13K]

get_datasets.sh [0.39K]

run.py [2.23K]

sgd.py [3.40K]

word2vec.py [8.93K]

a3 [123.18M]

data [122.78M]

dev.conll [1.25M]

dev.gold.conll [1.25M]

en-cw.txt [57.73M]

test.conll [1.76M]

test.gold.conll [1.76M]

train.conll [29.52M]

train.gold.conll [29.52M]

utils [53.84K]

__pycache__ [35.55K]

__init__.cpython-36.pyc [0.16K]

__init__.cpython-37.pyc [0.17K]

general_utils.cpython-36.pyc [2.53K]

general_utils.cpython-37.pyc [2.66K]

parser_utils.cpython-36.pyc [14.72K]

parser_utils.cpython-37.pyc [15.32K]

__init__.py

general_utils.py [2.39K]

parser_utils.py [15.90K]

.ds_store [6.00K]

collect_submission.sh [0.06K]

parser_model.py [7.46K]

parser_transitions.py [9.05K]

run.py [5.58K]

a4 [40.07M]

en_es_data [39.63M]

dev.en [83.80K]

dev.es [84.35K]

test.en [714.46K]

test.es [700.02K]

train.en [19.03M]

train.es [19.06M]

sanity_check_en_es_data [39.17K]

combined_outputs.pkl [1.51K]

dec_init_state.pkl [0.55K]

dec_state.pkl [0.55K]

e_t.pkl [0.73K]

enc_hiddens.pkl [2.68K]

enc_hiddens_proj.pkl [1.51K]

enc_masks.pkl [0.72K]

o_t.pkl [0.39K]

step_dec_state_0.pkl [0.55K]

step_dec_state_1.pkl [0.55K]

step_dec_state_10.pkl [0.55K]

step_dec_state_11.pkl [0.55K]

step_dec_state_12.pkl [0.55K]

step_dec_state_13.pkl [0.55K]

step_dec_state_14.pkl [0.55K]

step_dec_state_15.pkl [0.55K]

step_dec_state_16.pkl [0.55K]

step_dec_state_17.pkl [0.55K]

step_dec_state_18.pkl [0.55K]

step_dec_state_19.pkl [0.55K]

step_dec_state_2.pkl [0.55K]

step_dec_state_3.pkl [0.55K]

step_dec_state_4.pkl [0.55K]

step_dec_state_5.pkl [0.55K]

step_dec_state_6.pkl [0.55K]

step_dec_state_7.pkl [0.55K]

step_dec_state_8.pkl [0.55K]

step_dec_state_9.pkl [0.55K]

step_o_t_0.pkl [0.39K]

step_o_t_1.pkl [0.39K]

step_o_t_10.pkl [0.39K]

step_o_t_11.pkl [0.39K]

step_o_t_12.pkl [0.39K]

step_o_t_13.pkl [0.39K]

step_o_t_14.pkl [0.39K]

step_o_t_15.pkl [0.39K]

step_o_t_16.pkl [0.39K]

step_o_t_17.pkl [0.39K]

step_o_t_18.pkl [0.39K]

step_o_t_19.pkl [0.39K]

step_o_t_2.pkl [0.39K]

step_o_t_3.pkl [0.39K]

step_o_t_4.pkl [0.39K]

step_o_t_5.pkl [0.39K]

step_o_t_6.pkl [0.39K]

step_o_t_7.pkl [0.39K]

step_o_t_8.pkl [0.39K]

step_o_t_9.pkl [0.39K]

target_padded.pkl [1.15K]

train_sanity_check.en [3.86K]

train_sanity_check.es [3.77K]

vocab_sanity_check.json [2.51K]

ybar_t.pkl [0.45K]

.ds_store [10.00K]

__init__.py

collect_submission.sh [0.10K]

gpu_requirements.txt [0.02K]

local_env.yml [0.15K]

model_embeddings.py [1.81K]

nmt_model.py [24.67K]

readme.md [0.09K]

run.py [14.25K]

run.sh [0.89K]

sanity_check.py [9.03K]

utils.py [2.30K]

vocab.py [7.93K]

a2.pdf [286.41K]

a3.pdf [319.41K]

a4.pdf [339.20K]

a5.pdf [431.17K]

default-final-project-handout.pdf [605.74K]

lecture [372.41M]

lecture 01 introduction and word vectors [9.14M]

assignment 1 [60.51K]

a1.zip [60.43K]

preview.txt [0.09K]

gensim word vectors example [2.19K]

gensim.zip [2.10K]

preview.txt [0.09K]

suggested readings [332.80K]

5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf [109.37K]

efficient estimation of word representations in vector space.pdf [223.36K]

word2vec tutorial – the skip-gram model.txt [0.07K]

cs224n-2019-lecture01-wordvecs1.pdf [8.41M]

cs224n-2019-notes01-wordvecs1.pdf [353.98K]

lecture 02 word vectors 2 and word senses [22.52M]

additional readings [3.01M]

a latent variable model approach to pmi-based word embeddings.pdf [1.42M]

linear algebraic structure of word senses, with applications to polysemy.pdf [820.01K]

on the dimensionality of word embedding..pdf [809.25K]

suggested readings [3.05M]

evaluation methods for unsupervised word embeddings.pdf [280.05K]

glove global vectors for word representation.pdf [2.50M]

improving distributional similarity with lessons learned from word embeddings.pdf [284.29K]

cs224n-2019-lecture02-wordvecs2.pdf [16.00M]

cs224n-2019-notes02-wordvecs2.pdf [472.57K]

lecture 03 word window classification, neural networks, and matrix calculus [15.79M]

additional readings [414.82K]

natural language processing (almost) from scratch.pdf [414.82K]

assignment 2 [527.53K]

a2(1).zip [10.58K]

a2.pdf [286.41K]

cs224n_ practical tips for using virtual machines.pdf [230.55K]

suggested readings [139.00K]

cs231n notes on backprop.txt [0.04K]

review of differential calculus.pdf [138.96K]

cs224n-2019-lecture03-neuralnets.pdf [13.97M]

cs224n-2019-notes03-neuralnets.pdf [584.62K]

matrix calculus notes.pdf [197.96K]

lecture 04 backpropagation and computation graphs [12.19M]

suggested readings [543.95K]

cs231n notes on network architectures.txt [0.04K]

derivatives, backpropagation, and vectorization.pdf [201.07K]

learning representations by backpropagating errors.pdf [342.76K]

yes you should understand backprop.txt [0.07K]

cs224n-2019-lecture04-backprop.pdf [11.09M]

cs224n-2019-notes03-neuralnets.pdf [584.62K]

lecture 05 linguistic structure dependency parsing [75.22M]

assignment 3 [37.42M]

a3 加,.pdf [319.41K]

a3.zip [37.11M]

suggested readings [910.35K]

a fast and accurate dependency parser using neural networks.pdf [578.78K]

dependency parsing(1).txt [0.07K]

globally normalized transition-based neural networks.pdf [168.02K]

universal dependencies website.txt [0.03K]

universal stanford dependencies a cross-linguistic typology.pdf [163.44K]

cs224n-2019-lecture05-dep-parsing.pdf [16.54M]

cs224n-2019-lecture05-dep-parsing-scrawls.pdf [20.18M]

cs224n-2019-notes04-dependencyparsing.pdf [187.45K]

lecture 06 the probability of a sentence recurrent neural networks and language models [3.65M]

suggested readings [241.55K]

n-gram language models.pdf [241.42K]

on chomsky and the two cultures of statistical learning.txt [0.03K]

sequence modeling recurrent and recursive neural nets.txt [0.05K]

the unreasonable effectiveness of recurrent neural networks.txt [0.05K]

cs224n-2019-lecture06-rnnlm.pdf [1.99M]

cs224n-2019-notes05-lm_rnn.pdf [1.42M]

lecture 07 vanishing gradients and fancy rnns [21.16M]

assignment 4 [16.74M]

a4.pdf [339.20K]

a4.zip [14.39M]

azure guide for cs224n.pdf [1.79M]

cs224n_ practical tips for using virtual machines.pdf [230.55K]

suggested readings [1.58M]

learning long-term dependencies with gradient descent is difficult.pdf [0.98M]

on the difficulty of training recurrent neural networks.pdf [610.95K]

sequence modeling recurrent and recursive neural nets.txt [0.05K]

understanding lstm networks.txt [0.06K]

vanishing gradients jupyter notebook.txt [0.09K]

cs224n-2019-lecture07-fancy-rnn.pdf [1.42M]

cs224n-2019-notes05-lm_rnn.pdf [1.42M]

lecture 08 machine translation, seq2seq and attention [5.26M]

suggested readings [2.43M]

attention and augmented recurrent neural networks.txt [0.04K]

bleu.pdf [275.44K]

massive exploration of neural machine translation architectures .pdf [298.80K]

neural machine translation by jointly learning to align and translate.pdf [434.06K]

sequence to sequence learning with neural networks.pdf [109.46K]

sequence transduction with recurrent neural networks.pdf [1.34M]

statistical machine translation (book by philipp koehn).txt [0.10K]

statistical machine translation slides, cs224n 2015 (lectures 2 3 4).txt [0.07K]

cs224n-2019-lecture08-nmt.pdf [2.27M]

cs224n-2019-notes06-nmt_seq2seq_attention.pdf [580.39K]

lecture 09 practical tips for final projects [19.56M]

cs224n-2019-lecture09-final-projects.pdf [19.38M]

final-project-practical-tips.pdf [182.58K]

practical methodology.txt [0.06K]

lecture 10 question answering and the default final project [15.21M]

default final project [605.77K]

default-final-project-handout.pdf [605.74K]

github repo.txt [0.03K]

project proposal [105.67K]

project-proposal-instructions.pdf [105.67K]

cs224n-2019-lecture10-qa.pdf [14.51M]

lecture 11 convnets for nlp 加,zszhp2019 [16.96M]

suggested readings [653.39K]

a convolutional neural network for modelling sentences.pdf [417.42K]

convolutional neural networks for sentence classification.pdf [235.97K]

cs224n-2019-lecture12-subwords.pdf [16.32M]

lecture 12 information from parts of words subword models [16.74M]

assignment 5 [431.23K]

a5.pdf [431.17K]

zip (requires stanford login).txt [0.06K]

cs224n-2019-lecture12-subwords.pdf [16.32M]

lecture 13 modeling contexts of use contextual representations and pretraining [23.76M]

suggested readings [121.00K]

contextual word representations a contextual introduction.pdf [121.00K]

contextual word representations a contextual introduction.pdf [121.00K]

cs224n-2019-lecture13-contextual-representations.pdf [23.52M]

lecture 14 transformers and self-attention for generative models [7.73M]

suggested readings [2.02M]

image transformer.pdf [1.06M]

music transformer generating music with long-term structure.pdf [985.26K]

attention is all you need.pdf [2.10M]

cs224n-2019-lecture14-transformers.pdf [3.62M]

lecture 15 natural language generation [29.51M]

cs224n-2019-lecture15-nlg.pdf [29.51M]

lecture 16 reference in language and coreference resolution [20.30M]

cs224n-2019-lecture16-coref.pdf [15.90M]

cs224n-2019-lecture17-multitask.pdf [4.40M]

lecture 18 constituency parsing and tree recursive neural networks [20.56M]

suggested readings [564.98K]

parsing with compositional vector grammars.pdf [564.98K]

constituency parsing with a self-attentive encoder.pdf [458.94K]

cs224n-2019-lecture18-treernns.pdf [19.56M]

lecture 19 safety, bias, and fairness [11.41M]

cs224n-2019-lecture19-bias.pdf [11.41M]

lecture 20 future of nlp + deep learning [25.75M]

cs224n-2019-lecture20-future 加,.pdf [25.75M]

比赛 [6.48G]

kaggle文本分类比赛 [6.23G]

数据集 [6.08G]

embeddings.zip [5.96G]

sample_submission.csv [1.24M]

test.csv [4.99M]

train.csv [118.45M]

1.比赛介绍.wmv [19.89M]

2.数据分析.wmv [12.62M]

3.baseline模型(1).wmv [34.97M]

4.baseline模型(2).wmv [33.35M]

5.提交数据+提分策略.wmv [28.95M]

kaggle比赛介绍.pdf [2.99M]

kaggle比赛介绍.pptx [17.59M]

01零基础1小时完成一场ai比赛.pptx [17.88M]

02 达观杯文本智能挑战赛(入门指导).mp4 [95.76M]

02零基础1小时完成一场ai比赛.pptx [17.79M]

03达观杯之文本分类任务解析与代码使用(进阶指导).mp4 [111.39M]

03达观杯之文本分类任务解析与代码使用.pptx [16.51M]

python基础训练营(完结) [1.92G]

1.第一章绪论和环境配置.mp4.mp4 [56.30M]

10.【作业讲解】第五章:程序控制结构..mp4 [34.66M]

11.第六章函数-面向过程的编程..mp4 [129.58M]

12.【作业讲解】第六章:函数..mp4 [59.97M]

13.第七章类-面向对象的编程..mp4 [40.58M]

14.【作业讲解】第七章:类..mp4 [40.58M]

15.第八章文件、异常和模块..mp4 [131.24M]

16.【作业讲解】第八章:文件、异常和模块.mp4.mp4 [13.59M]

17.第九章有益的探索.mp4 [134.18M]

18.第十章python标准库.mp4.mp4 [96.20M]

19.第十一章numpy库.mp4 [90.57M]

2.【作业讲解】第一章:助教实际演示配置环境过程.mp4.mp4 [47.30M]

20.第十二章pandas库.mp4 [174.42M]

21.第十三章matplotlib.mp4 [128.25M]

22.第十四章sklearn库.mp4 [66.70M]

23.第十五章再谈编程.mp4 [74.78M]

3.第二章python基本语法元素.mp4.mp4 [127.54M]

4.【作业讲解】第二章:python基本语法元素.mp4.mp4 [80.63M]

5.第三章基本数据类型.mp4.mp4 [87.49M]

6.【作业讲解】第三章:基本数据类型.mp4.mp4 [79.13M]

7.第四章组合数据类型.mp4 [96.37M]

8.【作业讲解】第四章:复杂数据类型.mp4.mp4 [96.99M]

9.第五章程序控制结构.mp4 [82.76M]

pytorch框架第二期 [3.30G]

pytorch第二周作业讲解..ts [136.25M]

pytorch第一周作业讲解(1)..ts [59.89M]

pytorch第一周作业讲解(2)..ts [49.03M]

pytorch第一周作业讲解(3)..ts [47.22M]

第二周..txt [3.33K]

第二周第二节课:transforms与normalize..ts [86.89M]

第二周第三节课:transforms..ts [210.65M]

第二周第四节课:transforms(二)..ts [210.70M]

第二周第一节课:dataloader与dataset..ts [94.47M]

第六周..txt [0.72K]

第六周第二节正则化之dropout.ts [90.65M]

第六周第一节.ts [88.89M]

第三周.txt [3.29K]

第三周第二节课:模型容器与alexnet构建.ts [115.83M]

第三周第三节课.ts [119.52M]

第三周第四节课.ts [88.57M]

第三周第一节课:模型创建步骤与nn.module.ts [102.26M]

第四周…txt [3.62K]

第四周第二节课.ts [156.78M]

第四周第三节.ts [159.81M]

第四周第四节:优化器(一).ts [96.47M]

第四周第五节.ts [110.99M]

第四周第一节课:权值初始化.ts [97.34M]

第五周…txt [2.80K]

第五周第二节:tensorboard简介与安装.ts [67.14M]

第五周第三节.ts [125.89M]

第五周第四节.ts [180.19M]

第五周第五节.ts [140.87M]

第五周第一节.ts [139.43M]

第一周.txt [2.57K]

第一周第二节:张量简介与创建.ts [70.90M]

第一周第三节:张量操作与线性回归.ts [92.19M]

第一周第四节:计算图与动态图机制.ts [57.66M]

第一周第五节:autograd与逻辑回归.ts [96.93M]

第一周第一节:pytorch简介与安装.ts [109.11M]

开营仪式回放-老师部分.ts [178.95M]

贪心nlp (全-无密) [32.13G]

101-150.rar [3.82G]

1-50.rar [4.13G]

151-200.rar [3.66G]

201-250.rar [3.43G]

251-300.rar [4.26G]

301-350.rar [4.47G]

351-407.rar [6.17G]

51-100.rar [2.08G]

资料.rar [117.02M]

课程下载地址:

精品课程,SVIP下载,下载前请阅读上方文件目录,链接下载为百度云网盘,如连接失效,可评论告知。

下载价格:16.0微币
  • 普通用户下载价格 : 16.0微币
  • VIP会员下载价格 : 0微币
  • 最近更新2024年03月21日
Veke微课网所有资源均来自网络,由用户自行发布,如有侵权,请邮箱联系, 我们将在24小时内处理,联系邮箱:[email protected]
Veke微课网 » 机器学习+深度学习【11套课程】

发表评论

Veke微课网 互联网精品网课搜集者

立即查看 了解详情