李飞飞讲深度学习
课程介绍:
课程资源名称:李飞飞讲深度学习,资源大小:8.31G,详见下发截图与文件目录。
课程文件目录:李飞飞讲深度学习[8.31G]
deeplearning-master [95.10M]
cs231n [93.35M]
homeworks [10.31M]
assignment1 [2.08M]
.ipynb_checkpoints
cs231n [48.77K]
classifiers [33.05K]
__init__.py [0.10K]
k_nearest_neighbor.py [8.15K]
linear_classifier.py [5.50K]
linear_svm.py [4.59K]
neural_net.py [10.83K]
softmax.py [3.88K]
datasets [0.22K]
.gitignore [0.09K]
get_datasets.sh [0.13K]
__init__.py
data_utils.py [5.42K]
features.py [4.69K]
gradient_check.py [3.48K]
vis_utils.py [1.91K]
.gitignore [0.02K]
collectsubmission.sh [0.16K]
features.ipynb [339.13K]
frameworkpython [0.40K]
knn.ipynb [391.42K]
readme.md [0.13K]
requirements.txt [0.77K]
softmax.ipynb [60.02K]
start_ipython_osx.sh [0.11K]
svm.ipynb [446.08K]
two_layer_net.ipynb [839.54K]
assignment2 [1.30M]
cs231n [96.47K]
classifiers [21.84K]
__init__.py
cnn.py [6.36K]
fc_net.py [15.48K]
datasets [0.22K]
.gitignore [0.09K]
get_datasets.sh [0.13K]
.gitignore [0.04K]
__init__.py
data_utils.py [6.70K]
fast_layers.py [9.07K]
gradient_check.py [3.48K]
im2col.py [2.04K]
im2col_cython.pyx [4.87K]
layer_utils.py [3.06K]
layers.py [27.47K]
optim.py [6.08K]
setup.py [0.29K]
solver.py [9.41K]
vis_utils.py [1.91K]
.gitignore [0.02K]
batchnormalization.ipynb [219.90K]
collectsubmission.sh [0.19K]
convolutionalnetworks.ipynb [372.07K]
dropout.ipynb [51.79K]
frameworkpython [0.40K]
fullyconnectednets.ipynb [523.27K]
kitten.jpg [20.85K]
puppy.jpg [37.49K]
readme.md [5.76K]
requirements.txt [0.78K]
start_ipython_osx.sh [0.11K]
assignment3 [6.94M]
cs231n [97.07K]
classifiers [21.07K]
__init__.py
pretrained_cnn.py [9.62K]
rnn.py [11.45K]
datasets [0.32K]
.gitignore [0.06K]
get_coco_captioning.sh [0.10K]
get_pretrained_model.sh [0.05K]
get_tiny_imagenet_a.sh [0.11K]
__init__.py
captioning_solver.py [8.05K]
coco_utils.py [2.59K]
data_utils.py [7.25K]
fast_layers.py [9.07K]
gradient_check.py [3.48K]
im2col.py [2.04K]
im2col_cython.pyx [4.87K]
image_utils.py [2.29K]
layer_utils.py [4.08K]
layers.py [8.95K]
optim.py [2.68K]
rnn_layers.py [20.05K]
setup.py [0.29K]
.gitignore [0.02K]
collectsubmission.sh [0.19K]
frameworkpython [0.40K]
imagegeneration.ipynb [1.05M]
imagegradients.ipynb [819.23K]
kitten.jpg [20.85K]
lstm_captioning.ipynb [1.17M]
requirements.txt [0.78K]
rnn_captioning.ipynb [3.67M]
sky.jpg [144.99K]
start_ipython_osx.sh [0.11K]
untitled.ipynb [2.38K]
notes [13.68M]
images [13.67M]
l10_image_caption.png [248.84K]
l10_lstm.png [132.07K]
l10_rnn_layer.png [29.47K]
l10_rnn_layer2.png [31.17K]
l10_rnn_layer3.png [75.58K]
l10_summary.png [122.56K]
l11_fft.png [54.21K]
l11_im2col.png [60.33K]
l11_stack_cnn.png [66.57K]
l11_transfer_learning.png [206.65K]
l13_cascades.png [343.87K]
l13_hypercolumns.png [193.85K]
l13_multi_scale.png [352.56K]
l13_refinement.png [471.60K]
l13_semantic_segmentation_cnn.png [745.36K]
l13_similar_to_rcnn.png [374.35K]
l13_soft_attentation_for_caption.png [161.60K]
l13_soft_vs_hard1.png [206.07K]
l13_soft_vs_hard2.png [211.55K]
l13_upsampling.png [278.63K]
l2_deep_learning_pipline.png [291.39K]
l2_traditional_pipeline.png [190.44K]
l3_softmax_function.png [10.58K]
l3_softmax_loss_function.png [12.38K]
l3_svm_loss.png [45.75K]
l3_svm_loss_with_regularization.png [723.39K]
l4_activation_function.png [560.35K]
l4_backpropagation.png [53.99K]
l4_nerual.png [108.52K]
l5_batch_normalization.png [245.08K]
l5_parameters_initialization.png [41.15K]
l6_dropout.png [900.16K]
l7_convolutional_layer.png [418.15K]
l7_pooling_layer.png [209.31K]
l7_summary.png [123.11K]
l8_computer_vision_tasks.png [504.18K]
l8_localization_as_regression.png [164.32K]
l8_overfeat_1.png [133.09K]
l8_overfeat_2.png [191.42K]
l8_recap.png [151.81K]
l8_selective_search.png [366.91K]
l9_deconvolution_approaches.png [141.13K]
l9_deep_dream.png [289.64K]
l9_image_gradient.png [260.84K]
l9_image_reconstructure.png [85.63K]
l9_occlusion_experiments.png [237.09K]
l9_optimization_to_image.png [85.22K]
l9_t_sne.png [183.71K]
l9_visualize_activations.png [127.52K]
l9_visualize_deconvolution.png [1.58M]
l9_visualize_filers.png [353.07K]
l9_visualize_patches.png [801.97K]
l1_introduction.md [0.10K]
l10_recurrent_neural_networks.md [0.67K]
l11_cnns_in_practice.md [0.96K]
l13_segmentation_and_attention.md [2.14K]
l14_videos_and_unspervised_learning.md [0.15K]
l2_image_classification_pipeline.md [0.96K]
l3_loss_functions_and_optimization.md [1.03K]
l4_backpropagation_and_neural_networks.md [1.37K]
l5_training_neural_networks_part_1.md [1.06K]
l6_training_neural_networks_part_2.md [1.68K]
l7_convoluational_neural_networks.md [0.75K]
l8_spatial_localization_and_detection.md [2.63K]
l9_understanding_and_visualizing_cnns.md [4.04K]
slides [69.36M]
stanford university cs231n_ convolutional neural networks for visual recognition.pdf [88.77K]
winter1516_lecture1.pdf [9.45M]
winter1516_lecture10.pdf [7.15M]
winter1516_lecture11.pdf [4.06M]
winter1516_lecture12.pdf [5.94M]
winter1516_lecture13.pdf [5.12M]
winter1516_lecture14.pdf [3.99M]
winter1516_lecture2.pdf [2.53M]
winter1516_lecture3.pdf [2.55M]
winter1516_lecture4.pdf [2.17M]
winter1516_lecture5.pdf [4.30M]
winter1516_lecture6.pdf [5.67M]
winter1516_lecture7.pdf [2.43M]
winter1516_lecture8.pdf [5.39M]
winter1516_lecture9.pdf [8.52M]
deep_learning_with_python [1.48M]
dlwp [1.48M]
data_set [162.16K]
.gitignore [0.07K]
get_housing_data.sh [0.09K]
get_iris_data.sh [0.09K]
get_pima_indians_diabetes_data.sh [0.12K]
get_sonar_data.sh [0.16K]
international-airline-passengers.csv [2.28K]
wonderland.txt [159.36K]
figures [112.49K]
c19_cnn_structure.png [75.44K]
c20_save_augumented_images.png [37.05K]
models [383.14K]
c13 [9.21K]
simple_nn.h5 [8.25K]
simple_nn.json [0.96K]
c14 [373.92K]
nn-00–0.63.h5 [20.77K]
nn-01–0.64.h5 [20.77K]
nn-05–0.75.h5 [20.77K]
nn-10–0.75.h5 [20.77K]
nn-12–0.76.h5 [20.77K]
nn-13–0.76.h5 [20.77K]
nn-19–0.76.h5 [20.77K]
nn-20–0.77.h5 [20.77K]
nn-24–0.77.h5 [20.77K]
nn-27–0.78.h5 [20.77K]
nn-30–0.79.h5 [20.77K]
nn-34–0.79.h5 [20.77K]
nn-42–0.80.h5 [20.77K]
nn-45–0.81.h5 [20.77K]
nn-49–0.81.h5 [20.77K]
nn-51–0.82.h5 [20.77K]
nn-56–0.83.h5 [20.77K]
nn-best-model.h5 [20.77K]
c28 [0.01K]
.gitignore [0.01K]
others [4.60K]
images [4.60K]
aug_0_1119.png [0.56K]
aug_0_7671.png [0.10K]
aug_1_6272.png [0.08K]
aug_1_8474.png [0.47K]
aug_2_1863.png [0.08K]
aug_2_6188.png [0.38K]
aug_3_407.png [0.33K]
aug_3_7264.png [0.08K]
aug_4_6203.png [0.38K]
aug_4_8941.png [0.08K]
aug_5_6914.png [0.08K]
aug_5_7587.png [0.08K]
aug_6_5446.png [0.09K]
aug_6_6409.png [0.46K]
aug_7_547.png [0.09K]
aug_7_6061.png [0.36K]
aug_8_6809.png [0.56K]
aug_8_7553.png [0.35K]
c02_instoduction_to_theano.ipynb [3.79K]
c03_introduction_to_keras.ipynb [6.94K]
c04_introduction_to_tensorflow.ipynb [5.13K]
c07_develop_your_first_neural_network_with_keras.ipynb [25.34K]
c08_evaluate_the_performance_of_model.ipynb [54.40K]
c09_use_keras_models_with_scikit-learn_for_general_machine_learning.ipynb [41.94K]
c10_project_multiclass_classification.ipynb [7.17K]
c11_project_binary_classification_of_sonar_returns.ipynb [9.71K]
c12_project_regression_of_boston_house_price.ipynb [5.75K]
c13_save_and_load_keras_model.ipynb [8.83K]
c14_checkpoint_the_bset_weights_during_training.ipynb [14.52K]
c15_plot_trainging_history_data.ipynb [37.87K]
c16_reduce_overfit_with_dropout.ipynb [3.74K]
c17_lift_performance_with_learning_rate_schedule.ipynb [19.13K]
c19_project_handwritten_digit_recognition.ipynb [28.64K]
c20_image_data_augumentation_with_image_data_generator.ipynb [341.21K]
c21_image_classification_with_cnn.ipynb [121.68K]
c22_project_predict_sentiment_with_movie_review.ipynb [13.64K]
c23_project_predict_time_series_with_fcnn.ipynb [80.86K]
c25_sequence_classification_with_lstm.ipynb [6.41K]
c28_generating_text_with_lstm.ipynb [14.03K]
.gitignore [0.01K]
readme.md [0.91K]
requirements.txt [0.84K]
start_ipython_notebook.sh [0.06K]
keras_practice [231.59K]
kps [229.88K]
figures [80.97K]
multi-input-multi-output-graph.png [80.97K]
fine_tune_vgg16.ipynb [13.82K]
imdb_lstm.ipynb [10.51K]
stateful_lstm.ipynb [115.99K]
untitled.ipynb [8.59K]
.gitignore [0.01K]
readme.md [0.81K]
requirements.txt [0.84K]
start_ipython_notebook.sh [0.04K]
others [42.59K]
requirements.txt [0.10K]
start_notebook.sh [0.06K]
visualize_high_dimensional_data.ipynb [42.43K]
.gitignore [1.05K]
readme.md [0.37K]
1.计算机视觉历史回顾与介绍上.mp4 [206.27M]
10.神经网络训练细节part1(上).mp4 [300.84M]
11.神经网络训练细节part1(下).mp4 [301.21M]
12.神经网络训练细节part2(上).mp4 [268.28M]
13.神经网络训练细节part2(下).mp4 [263.18M]
14.卷积神经网络详解(上).mp4 [299.44M]
15.卷积神经网络详解(下).mp4 [300.03M]
16.迁移学习之物体定位于检测(上).mp4 [278.07M]
17.迁移学习之物体定位于检测(下).mp4 [218.63M]
18.卷积神经网络的可视化与进一步理解(上).mp4 [297.65M]
19.卷积神经网络的可视化与进一步理解(下).mp4 [299.59M]
2.计算机视觉历史回顾与介绍中.mp4 [162.32M]
20.循环神经网络(上).mp4 [228.60M]
21.循环神经网络(下).mp4 [298.38M]
22.卷积神经网络工程实践技巧与注意点(上).mp4.mp4 [274.16M]
23.卷积神经网络工程实践技巧与注意点(下).mp4 [293.29M]
24.深度学习开源库使用介绍(上).mp4.mp4 [320.04M]
25.深度学习开源库使用介绍(下).mp4.mp4 [298.87M]
26.图像分割与注意力模型(上).mp4.mp4 [254.15M]
27.图像分割与注意力模型(下).mp4.mp4 [286.64M]
28.视频检测与无监督学习(上).mp4.mp4 [273.94M]
29.视频检测与无监督学习(下).mp4.mp4 [325.21M]
3.计算机视觉历史回顾与介绍下.mp4 [198.28M]
30.来自jeff dean的受邀报告(上).mp4.mp4 [276.90M]
31.来自jeff dean的受邀报告(下).mp4 [292.70M]
4.数据驱动的图像分类方式:k最邻近与线性分类器(上).mp4 [222.04M]
5.数据驱动的图像分类方式:k最邻近与线性分类器(下).mp4 [217.65M]
6.线性分类器损失函数与最优化(上).mp4 [274.00M]
7.线性分类器损失函数与最优化(下).mp4 [269.00M]
8.反向传播与神经网络初步(上).mp4 [307.88M]
9.反向传播与神经网络初步(下).mp4 [306.58M]
课程下载地址:
精品课程,SVIP下载,下载前请阅读上方文件目录,链接下载为百度云网盘,如连接失效,可评论告知。